Distinguishing Mountain Front and Mountain Block Recharge in an Intermontane Basin of the Himalayan Region

© 2022 National Ground Water Association.

Détails bibliographiques
Publié dans:Ground water. - 1979. - 60(2022), 4 vom: 10. Juli, Seite 488-495
Auteur principal: Dar, Tanveer (Auteur)
Autres auteurs: Rai, Nachiketa, Kumar, Sudhir
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:Ground water
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM336741286
003 DE-627
005 20250303003125.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1111/gwat.13181  |2 doi 
028 5 2 |a pubmed25n1122.xml 
035 |a (DE-627)NLM336741286 
035 |a (NLM)35141887 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dar, Tanveer  |e verfasserin  |4 aut 
245 1 0 |a Distinguishing Mountain Front and Mountain Block Recharge in an Intermontane Basin of the Himalayan Region 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 National Ground Water Association. 
520 |a Intermontane basin aquifers worldwide, particularly in the Himalayan region, are recharged largely by the adjoining mountains. Recharge in these basins can occur either by water infiltrating from streams near mountain fronts (MFs) as mountain front recharge (MFR) or by sub-surface mountain block infiltration as mountain block recharge (MBR). MFR and MBR recharge are challenging to distinguish and are least quantified, considering the lack of extensive understanding of the hydrological processes in the mountains. This study used oxygen and hydrogen isotopes (δ18 O and δ2 H), electrical conductivity (EC) data, hydraulic head, and groundwater level data to differentiate MFR and MBR. Groundwater level data provide information about the groundwater-surface water interactions and groundwater flow directions, whereas isotopes and EC data are used to distinguish and quantify different recharge sources. The present methodology is tested in an intermontane basin of the Himalayan region. The results suggest that karst springs (KS) and deep groundwater (DGW) recharge are dominated by snowmelt (47% ± 10% and 46% ± 9%) as MBR from adjacent mountains, insignificantly affected by evaporation. The hydraulic head data and isotopes indicate Quaternary shallow groundwater (SGW) aquifer system recharge as MFR of local meteoric water with significant evaporation. The results indicate several flow paths in the aquifer system, a local flow for KS, intermediate flow for SGW, and regional flow for DGW. The findings will significantly impact water resource management in the area and provide vital baseline knowledge for sustainable groundwater management in other Himalayan intermontane basins 
650 4 |a Journal Article 
700 1 |a Rai, Nachiketa  |e verfasserin  |4 aut 
700 1 |a Kumar, Sudhir  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Ground water  |d 1979  |g 60(2022), 4 vom: 10. Juli, Seite 488-495  |w (DE-627)NLM098182528  |x 1745-6584  |7 nnas 
773 1 8 |g volume:60  |g year:2022  |g number:4  |g day:10  |g month:07  |g pages:488-495 
856 4 0 |u http://dx.doi.org/10.1111/gwat.13181  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 60  |j 2022  |e 4  |b 10  |c 07  |h 488-495