Siamese Implicit Region Proposal Network With Compound Attention for Visual Tracking

Recently, siamese-based trackers have achieved significant successes. However, those trackers are restricted by the difficulty of learning consistent feature representation with the object. To address the above challenge, this paper proposes a novel siamese implicit region proposal network with comp...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 01., Seite 1882-1894
1. Verfasser: Chan, Sixian (VerfasserIn)
Weitere Verfasser: Tao, Jian, Zhou, Xiaolong, Bai, Cong, Zhang, Xiaoqin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM33671307X
003 DE-627
005 20231225232750.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3148876  |2 doi 
028 5 2 |a pubmed24n1122.xml 
035 |a (DE-627)NLM33671307X 
035 |a (NLM)35139020 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chan, Sixian  |e verfasserin  |4 aut 
245 1 0 |a Siamese Implicit Region Proposal Network With Compound Attention for Visual Tracking 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.02.2022 
500 |a Date Revised 18.02.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Recently, siamese-based trackers have achieved significant successes. However, those trackers are restricted by the difficulty of learning consistent feature representation with the object. To address the above challenge, this paper proposes a novel siamese implicit region proposal network with compound attention for visual tracking. First, an implicit region proposal (IRP) module is designed by combining a novel pixel-wise correlation method. This module can aggregate feature information of different regions that are similar to the pre-defined anchor boxes in Region Proposal Network. To this end, the adaptive feature receptive fields then can be obtained by linear fusion of features from different regions. Second, a compound attention module including a channel and non-local attention is raised to assist the IRP module to perform a better perception of the scale and shape of the object. The channel attention is applied for mining the discriminative information of the object to handle the background clutters of the template, while non-local attention is trained to aggregate the contextual information to learn the semantic range of the object. Finally, experimental results demonstrate that the proposed tracker achieves state-of-the-art performance on six challenging benchmark tests, including VOT-2018, VOT-2019, OTB-100, GOT-10k, LaSOT, and TrackingNet. Further, our obtained results demonstrate that the proposed approach can be run at an average speed of 72 FPS in real time 
650 4 |a Journal Article 
700 1 |a Tao, Jian  |e verfasserin  |4 aut 
700 1 |a Zhou, Xiaolong  |e verfasserin  |4 aut 
700 1 |a Bai, Cong  |e verfasserin  |4 aut 
700 1 |a Zhang, Xiaoqin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 01., Seite 1882-1894  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:01  |g pages:1882-1894 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3148876  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 01  |h 1882-1894