Spatiotemporal Deconvolution of Hydrophone Response for Linear and Nonlinear Beams-Part I : Theory, Spatial-Averaging Correction Formulas, and Criteria for Sensitive Element Size

This article reports spatiotemporal deconvolution methods and simple empirical formulas to correct pressure and beamwidth measurements for spatial averaging across a hydrophone sensitive element. Readers who are uninterested in hydrophone theory may proceed directly to Appendix A for an easy method...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 69(2022), 4 vom: 03. Apr., Seite 1243-1256
1. Verfasser: Wear, Keith A (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, U.S. Gov't, P.H.S.
LEADER 01000naa a22002652 4500
001 NLM336663315
003 DE-627
005 20231225232644.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2022.3150186  |2 doi 
028 5 2 |a pubmed24n1122.xml 
035 |a (DE-627)NLM336663315 
035 |a (NLM)35133964 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wear, Keith A  |e verfasserin  |4 aut 
245 1 0 |a Spatiotemporal Deconvolution of Hydrophone Response for Linear and Nonlinear Beams-Part I  |b Theory, Spatial-Averaging Correction Formulas, and Criteria for Sensitive Element Size 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.04.2022 
500 |a Date Revised 16.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a This article reports spatiotemporal deconvolution methods and simple empirical formulas to correct pressure and beamwidth measurements for spatial averaging across a hydrophone sensitive element. Readers who are uninterested in hydrophone theory may proceed directly to Appendix A for an easy method to estimate spatial-averaging correction factors. Hydrophones were modeled as angular spectrum filters. Simulations modeled nine circular transducers (1-10 MHz; F/1.4-F/3.2) driven at six power levels and measured with eight hydrophones (432 beam/hydrophone combinations). For example, the model predicts that if a 200- [Formula: see text] membrane hydrophone measures a moderately nonlinear 5-MHz beam from an F/1 transducer, spatial-averaging correction factors are 33% (peak compressional pressure or pc ), 18% (peak rarefactional pressure or p ), and 18% (full width half maximum or FWHM). Theoretical and experimental estimates of spatial-averaging correction factors to were in good agreement (within 5%) for linear and moderately nonlinear signals. Criteria for maximum appropriate hydrophone sensitive element size as functions of experimental parameters were derived. Unlike the oft-cited International Electrotechnical Commission (IEC) criterion, the new criteria were derived for focusing rather than planar transducers and can accommodate nonlinear signals in addition to linear signals. Responsible reporting of hydrophone-based pressure and beamwidth measurements should always acknowledge spatial-averaging considerations 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, P.H.S. 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 69(2022), 4 vom: 03. Apr., Seite 1243-1256  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:69  |g year:2022  |g number:4  |g day:03  |g month:04  |g pages:1243-1256 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2022.3150186  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 69  |j 2022  |e 4  |b 03  |c 04  |h 1243-1256