|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM336628218 |
003 |
DE-627 |
005 |
20231225232557.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202106565
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1122.xml
|
035 |
|
|
|a (DE-627)NLM336628218
|
035 |
|
|
|a (NLM)35130361
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a He, Xin
|e verfasserin
|4 aut
|
245 |
1 |
3 |
|a An MXene-Based Metal Anode with Stepped Sodiophilic Gradient Structure Enables a Large Current Density for Rechargeable Na-O2 Batteries
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 14.04.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a The metal anode is the pivotal component for advanced sodium-metal batteries such as Na-O2 batteries. Designing a 3D confinement scaffold is a promising strategy for constructing dendrite-free sodium-metal anodes; however, cycling stability at a large current density (>10 mA cm-2 ) is still difficult to realize. Herein, the design of new lightweight and fibrous hydroxylated Ti3 C2 (h-Ti3 C2 ) MXene based scaffolds with stepped sodiophilic gradient structure (h-M-SSG) is reported, and its thickness can be controlled (80-250 µm). The sodiophilic gradient structure (adjusted by h-Ti3 C2 ) can effectively induce sodium ions to preferentially deposit at the bottom of the scaffold, thus inhibiting dendrite growth. h-M-SSG/Na-based symmetrical batteries exhibit a low polarization voltage and long cycling life at a high current density (40 mA cm-2 ) and a high cut-off capacity (40 mAh cm-2 ). Moreover, a Na-O2 battery with an h-M-SSG/Na anode exhibits a low potential gap of 0.137 V after 45 cycles at 1000 mA g-1 and 1000 mAh g-1 . This deposition-regulation strategy would inspire the design of 3D scaffolds for high-performance sodium-metal-anode-based batteries
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 3D MXene scaffolds
|
650 |
|
4 |
|a Na-O2 battery
|
650 |
|
4 |
|a dendrite-free Na anodes
|
650 |
|
4 |
|a large current density
|
650 |
|
4 |
|a stepped sodiophilic gradient
|
700 |
1 |
|
|a Ni, Youxuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Yixin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Haoxiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lu, Yong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Haixia
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yan, Zhenhua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Kai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Jun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 15 vom: 30. Apr., Seite e2106565
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:15
|g day:30
|g month:04
|g pages:e2106565
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202106565
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 15
|b 30
|c 04
|h e2106565
|