Fair Representation : Guaranteeing Approximate Multiple Group Fairness for Unknown Tasks

Motivated by scenarios where data is used for diverse prediction tasks, we study whether fair representation can be used to guarantee fairness for unknown tasks and for multiple fairness notions. We consider seven group fairness notions that cover the concepts of independence, separation, and calibr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 1 vom: 07. Jan., Seite 525-538
1. Verfasser: Shen, Xudong (VerfasserIn)
Weitere Verfasser: Wong, Yongkang, Kankanhalli, Mohan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM33662610X
003 DE-627
005 20231225232554.0
007 cr uuu---uuuuu
008 231225s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3148905  |2 doi 
028 5 2 |a pubmed24n1122.xml 
035 |a (DE-627)NLM33662610X 
035 |a (NLM)35130150 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shen, Xudong  |e verfasserin  |4 aut 
245 1 0 |a Fair Representation  |b Guaranteeing Approximate Multiple Group Fairness for Unknown Tasks 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.04.2023 
500 |a Date Revised 05.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Motivated by scenarios where data is used for diverse prediction tasks, we study whether fair representation can be used to guarantee fairness for unknown tasks and for multiple fairness notions. We consider seven group fairness notions that cover the concepts of independence, separation, and calibration. Against the backdrop of the fairness impossibility results, we explore approximate fairness. We prove that, although fair representation might not guarantee fairness for all prediction tasks, it does guarantee fairness for an important subset of tasks-the tasks for which the representation is discriminative. Specifically, all seven group fairness notions are linearly controlled by fairness and discriminativeness of the representation. When an incompatibility exists between different fairness notions, fair and discriminative representation hits the sweet spot that approximately satisfies all notions. Motivated by our theoretical findings, we propose to learn both fair and discriminative representations using pretext loss which self-supervises learning, and Maximum Mean Discrepancy as a fair regularizer. Experiments on tabular, image, and face datasets show that using the learned representation, downstream predictions that we are unaware of when learning the representation indeed become fairer. The fairness guarantees computed from our theoretical results are all valid 
650 4 |a Journal Article 
700 1 |a Wong, Yongkang  |e verfasserin  |4 aut 
700 1 |a Kankanhalli, Mohan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 1 vom: 07. Jan., Seite 525-538  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:1  |g day:07  |g month:01  |g pages:525-538 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3148905  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 1  |b 07  |c 01  |h 525-538