Multiple factors mediate insecticide toxicity to a key predator for cotton insect pest management

© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology (London, England). - 1992. - 31(2022), 3 vom: 07. Apr., Seite 490-502
1. Verfasser: Potin, Denner Manthay (VerfasserIn)
Weitere Verfasser: Machado, Anderson Vinnicius Arruda, Barbosa, Paulo Roberto Ramos, Torres, Jorge Braz
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Ecotoxicology (London, England)
Schlagworte:Journal Article Biological control Chemical control Insect behavior Pesticide toxicology Toxicity bioassay Insecticides Malathion U5N7SU872W
Beschreibung
Zusammenfassung:© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Mortality of agricultural pests caused by arthropod predators is a valuable ecosystem service for crop production. The earwig, Euborellia annulipes (Lucas), attacks different pest species in various crop ecosystems, including larvae and pupae of the boll weevil, Anthonomus grandis grandis (Boh.). In this study, multiple factors were assessed to measure the selectivity of insecticides used against sap-sucking and chewing cotton pests for two E. annulipes populations. Nymphs and adults of E. annulipes were exposed to the insecticides in two ways: ingestion of contaminated prey, and contact with dried residues on either inert surfaces or treated plants bearing prey. Pymetrozine, chlorantraniliprole, and spinetoram had little effect on the predator regardless the tested earwig population, life stage with developmental time and survival, or the route of exposure (ingestion and residual). Cyantraniliprole dried-residue impeded nymph to complete development and only 27% of adults survived until 20 days after exposure. Pyriproxyfen was harmless through acute toxicity to nymphs and adult earwigs (70-100% survival 72 h after exposure), but prevented normal development of nymphs to adults causing chronic toxicity. Chlorfenapyr, indoxacarb, lambda-cyhalothrin, chlorpyrifos, dimethoate, and malathion were harmful to the predator regardless life stage or method of exposure. The negative impact of thiamethoxam, lambda-cyhalothrin and indoxacarb was diminished when exposure occurred on plants with predator allowed to shelter in the soil. The results indicate that insecticide selectivity outcome varies by the insecticide, predator life stage and the predator's behavior. Therefore, testing different predator life stages via several routes of exposure, without denying the insect the opportunity to engage in its normal behavior can provide better estimates of insecticide selectivity
Beschreibung:Date Completed 24.03.2022
Date Revised 24.03.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1573-3017
DOI:10.1007/s10646-022-02526-6