Counterfactual inference with latent variable and its application in mental health care

© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022.

Bibliographische Detailangaben
Veröffentlicht in:Data mining and knowledge discovery. - 2003. - 36(2022), 2 vom: 25., Seite 811-840
1. Verfasser: Marchezini, Guilherme F (VerfasserIn)
Weitere Verfasser: Lacerda, Anisio M, Pappa, Gisele L, Meira, Wagner Jr, Miranda, Debora, Romano-Silva, Marco A, Costa, Danielle S, Diniz, Leandro Malloy
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Data mining and knowledge discovery
Schlagworte:Journal Article Counterfactual inference Mental health Multivariate regression
LEADER 01000naa a22002652 4500
001 NLM336584393
003 DE-627
005 20231225232454.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10618-021-00818-9  |2 doi 
028 5 2 |a pubmed24n1121.xml 
035 |a (DE-627)NLM336584393 
035 |a (NLM)35125931 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Marchezini, Guilherme F  |e verfasserin  |4 aut 
245 1 0 |a Counterfactual inference with latent variable and its application in mental health care 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022. 
520 |a This paper deals with the problem of modeling counterfactual reasoning in scenarios where, apart from the observed endogenous variables, we have a latent variable that affects the outcomes and, consequently, the results of counterfactuals queries. This is a common setup in healthcare problems, including mental health. We propose a new framework where the aforementioned problem is modeled as a multivariate regression and the counterfactual model accounts for both observed and a latent variable, where the latter represents what we call the patient individuality factor ( φ ). In mental health, focusing on individuals is paramount, as past experiences can change how people see or deal with situations, but individuality cannot be directly measured. To the best of our knowledge, this is the first counterfactual approach that considers both observational and latent variables to provide deterministic answers to counterfactual queries, such as: what if I change the social support of a patient, to what extent can I change his/her anxiety? The framework combines concepts from deep representation learning and causal inference to infer the value of φ and capture both non-linear and multiplicative effects of causal variables. Experiments are performed with both synthetic and real-world datasets, where we predict how changes in people's actions may lead to different outcomes in terms of symptoms of mental illness and quality of life. Results show the model learns the individually factor with errors lower than 0.05 and answers counterfactual queries that are supported by the medical literature. The model has the potential to recommend small changes in people's lives that may completely change their relationship with mental illness 
650 4 |a Journal Article 
650 4 |a Counterfactual inference 
650 4 |a Mental health 
650 4 |a Multivariate regression 
700 1 |a Lacerda, Anisio M  |e verfasserin  |4 aut 
700 1 |a Pappa, Gisele L  |e verfasserin  |4 aut 
700 1 |a Meira, Wagner  |c Jr  |e verfasserin  |4 aut 
700 1 |a Miranda, Debora  |e verfasserin  |4 aut 
700 1 |a Romano-Silva, Marco A  |e verfasserin  |4 aut 
700 1 |a Costa, Danielle S  |e verfasserin  |4 aut 
700 1 |a Diniz, Leandro Malloy  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Data mining and knowledge discovery  |d 2003  |g 36(2022), 2 vom: 25., Seite 811-840  |w (DE-627)NLM191691062  |x 1384-5810  |7 nnns 
773 1 8 |g volume:36  |g year:2022  |g number:2  |g day:25  |g pages:811-840 
856 4 0 |u http://dx.doi.org/10.1007/s10618-021-00818-9  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_21 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_61 
912 |a GBV_ILN_62 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_90 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_121 
912 |a GBV_ILN_285 
912 |a GBV_ILN_350 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2002 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2012 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2043 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2162 
951 |a AR 
952 |d 36  |j 2022  |e 2  |b 25  |h 811-840