Plasmonic Active "Hot Spots"-Confined Photocatalytic CO2 Reduction with High Selectivity for CH4 Production

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 14 vom: 02. Apr., Seite e2109330
1. Verfasser: Jiang, Xiaoyi (VerfasserIn)
Weitere Verfasser: Huang, Jindou, Bi, Zhenhua, Ni, Wenjun, Gurzadyan, Gagik, Zhu, Yongan, Zhang, Zhenyi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article CH4 production CO2 photoreduction dual-hetero-active-sites metal/nonmetal plasmon coupling plasmonic “hot spots”
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
Plasmonic nanostructures have tremendous potential to be applied in photocatalytic CO2 reduction, since their localized surface plasmon resonance can collect low-energy-photons to derive energetic "hot electrons" for reducing the CO2 activation-barrier. However, the hot electron-driven CO2 reduction is usually limited by poor efficiency and low selectivity for producing kinetically unfavorable hydrocarbons. Here, a new idea of plasmonic active "hot spot"-confined photocatalysis is proposed to overcome this drawback. W18 O49 nanowires on the outer surface of Au nanoparticles-embedded TiO2 electrospun nanofibers are assembled to obtain lots of Au/TiO2 /W18 O49 sandwich-like substructures in the formed plasmonic heterostructure. The short distance (< 10 nm) between Au and adjacent W18 O49 can induce an intense plasmon-coupling to form the active "hot spots" in the substructures. These active "hot spots" are capable of not only gathering the incident light to enhance "hot electrons" generation and migration, but also capturing protons and CO through the dual-hetero-active-sites (Au-O-Ti and W-O-Ti) at the Au/TiO2 /W18 O49 interface, as evidenced by systematic experiments and simulation analyses. Thus, during photocatalytic CO2 reduction at 43± 2 °C, these active "hot spots" enriched in the well-designed Au/TiO2 /W18 O49 plasmonic heterostructure can synergistically confine the hot-electron, proton, and CO intermediates for resulting in the CH4 and CO production-rates at ≈35.55 and ≈2.57 µmol g-1 h-1 , respectively, and the CH4 -product selectivity at ≈93.3%
Beschreibung:Date Revised 07.04.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202109330