|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM336450915 |
003 |
DE-627 |
005 |
20231225232156.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202109870
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1121.xml
|
035 |
|
|
|a (DE-627)NLM336450915
|
035 |
|
|
|a (NLM)35112396
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Cheng, Situo
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Selective Center Charge Density Enables Conductive 2D Metal-Organic Frameworks with Exceptionally High Pseudocapacitance and Energy Density for Energy Storage Devices
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 07.04.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a Conductive 2D conjugated metal-organic frameworks (c-MOFs) are attractive electrode materials due to their high intrinsic electrical conductivities, large specific surface area, and abundant unsaturated bonds/functional groups. However, the 2D c-MOFs reported so far have limited charge storage capacity during electrochemical charging and discharging, and the energy density is still unsatisfactory. In this work, a strategy of selective center charge density to expand the traditional electrode materials to the electrode-electrolyte coupled system with the prototypical of 2D Co-catecholate (Co-CAT) is proposed. Electrochemical mechanism studies and density functional theory calculations reveal that dual redox sites are achieved with the quinone groups (CAT) and metal-ion linkages (Co-O) serving as the active sites of pseudocapacitive cation (Na+ ) and redox electrolyte species (SO3 2- ). The resultant electrode delivers an exceptionally high capacity of 1160 F g-1 at 1 A g-1 and a special self-discharge rate (86.8% after 48 h). Moreover, the packaged asymmetric device exhibits a state-of-the-art energy density of 158 W h kg-1 at the power density of 2000 W kg-1 and an excellent self-discharge rate of 80.6% after 48 h. This success will provide a new perspective for the performance enhancement for the 2D-MOF-based energy storage devices
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 2D metal−organic frameworks
|
650 |
|
4 |
|a electrochemical redox sites
|
650 |
|
4 |
|a electrode materials
|
650 |
|
4 |
|a energy density
|
650 |
|
4 |
|a self-discharge
|
700 |
1 |
|
|a Gao, Wenzheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cao, Zhen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Yifan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xie, Erqing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fu, Jiecai
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 14 vom: 02. Apr., Seite e2109870
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:14
|g day:02
|g month:04
|g pages:e2109870
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202109870
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 14
|b 02
|c 04
|h e2109870
|