Consistency and Diversity Induced Human Motion Segmentation

Subspace clustering is a classical technique that has been widely used for human motion segmentation and other related tasks. However, existing segmentation methods often cluster data without guidance from prior knowledge, resulting in unsatisfactory segmentation results. To this end, we propose a n...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 1 vom: 01. Jan., Seite 197-210
1. Verfasser: Zhou, Tao (VerfasserIn)
Weitere Verfasser: Fu, Huazhu, Gong, Chen, Shao, Ling, Porikli, Fatih, Ling, Haibin, Shen, Jianbing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM336378831
003 DE-627
005 20231225232017.0
007 cr uuu---uuuuu
008 231225s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3147841  |2 doi 
028 5 2 |a pubmed24n1121.xml 
035 |a (DE-627)NLM336378831 
035 |a (NLM)35104213 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Tao  |e verfasserin  |4 aut 
245 1 0 |a Consistency and Diversity Induced Human Motion Segmentation 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.04.2023 
500 |a Date Revised 05.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Subspace clustering is a classical technique that has been widely used for human motion segmentation and other related tasks. However, existing segmentation methods often cluster data without guidance from prior knowledge, resulting in unsatisfactory segmentation results. To this end, we propose a novel Consistency and Diversity induced human Motion Segmentation (CDMS) algorithm. Specifically, our model factorizes the source and target data into distinct multi-layer feature spaces, in which transfer subspace learning is conducted on different layers to capture multi-level information. A multi-mutual consistency learning strategy is carried out to reduce the domain gap between the source and target data. In this way, the domain-specific knowledge and domain-invariant properties can be explored simultaneously. Besides, a novel constraint based on the Hilbert Schmidt Independence Criterion (HSIC) is introduced to ensure the diversity of multi-level subspace representations, which enables the complementarity of multi-level representations to be explored to boost the transfer learning performance. Moreover, to preserve the temporal correlations, an enhanced graph regularizer is imposed on the learned representation coefficients and the multi-level representations of the source data. The proposed model can be efficiently solved using the Alternating Direction Method of Multipliers (ADMM) algorithm. Extensive experimental results on public human motion datasets demonstrate the effectiveness of our method against several state-of-the-art approaches 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Fu, Huazhu  |e verfasserin  |4 aut 
700 1 |a Gong, Chen  |e verfasserin  |4 aut 
700 1 |a Shao, Ling  |e verfasserin  |4 aut 
700 1 |a Porikli, Fatih  |e verfasserin  |4 aut 
700 1 |a Ling, Haibin  |e verfasserin  |4 aut 
700 1 |a Shen, Jianbing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 1 vom: 01. Jan., Seite 197-210  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:1  |g day:01  |g month:01  |g pages:197-210 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3147841  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 1  |b 01  |c 01  |h 197-210