Learning Representations by Graphical Mutual Information Estimation and Maximization

The rich content in various real-world networks such as social networks, biological networks, and communication networks provides unprecedented opportunities for unsupervised machine learning on graphs. This paper investigates the fundamental problem of preserving and extracting abundant information...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 1 vom: 01. Jan., Seite 722-737
1. Verfasser: Peng, Zhen (VerfasserIn)
Weitere Verfasser: Luo, Minnan, Huang, Wenbing, Li, Jundong, Zheng, Qinghua, Sun, Fuchun, Huang, Junzhou
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The rich content in various real-world networks such as social networks, biological networks, and communication networks provides unprecedented opportunities for unsupervised machine learning on graphs. This paper investigates the fundamental problem of preserving and extracting abundant information from graph-structured data into embedding space without external supervision. To this end, we generalize conventional mutual information computation from vector space to graph domain and present a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graph and hidden representation. Except for standard GMI which considers graph structures from a local perspective, our further proposed GMI++ additionally captures global topological properties by analyzing the co-occurrence relationship of nodes. GMI and its extension exhibit several benefits: First, they are invariant to the isomorphic transformation of input graphs-an inevitable constraint in many existing methods; Second, they can be efficiently estimated and maximized by current mutual information estimation methods; Lastly, our theoretical analysis confirms their correctness and rationality. With the aid of GMI, we develop an unsupervised embedding model and adapt it to the specific anomaly detection task. Extensive experiments indicate that our GMI methods achieve promising performance in various downstream tasks, such as node classification, link prediction, and anomaly detection
Beschreibung:Date Completed 05.04.2023
Date Revised 05.04.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2022.3147886