Design Rules of a Sulfur Redox Electrocatalyst for Lithium-Sulfur Batteries
© 2022 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 14 vom: 06. Apr., Seite e2110279 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article lattice matching lithium-sulfur batteries orbital selection shuttle effect |
Zusammenfassung: | © 2022 Wiley-VCH GmbH. Seeking an electrochemical catalyst to accelerate the liquid-to-solid conversion of soluble lithium polysulfides to insoluble products is crucial to inhibit the shuttle effect in lithium-sulfur (Li-S) batteries and thus increase their practical energy density. Mn-based mullite (SmMn2 O5 ) is used as a model catalyst for the sulfur redox reaction to show how the design rules involving lattice matching and 3d-orbital selection improve catalyst performance. Theoretical simulation shows that the positions of Mn and O active sites on the (001) surface are a good match with those of Li and S atoms in polysulfides, resulting in their tight anchoring to each other. Fundamentally, dz2 and dx2 -y2 around the Fermi level are found to be crucial for strongly coupling with the p-orbitals of the polysulfides and thus decreasing the redox overpotential. Following the theoretical calculation, SmMn2 O5 catalyst is synthesized and used as an interlayer in a Li-S battery. The resulted battery has a high cycling stability over 1500 cycles at 0.5 C and more promisingly a high areal capacity of 7.5 mAh cm-2 is achieved with a sulfur loading of ≈5.6 mg cm-2 under the condition of a low electrolyte/sulfur (E/S) value ≈4.6 µL mg-1 |
---|---|
Beschreibung: | Date Revised 07.04.2022 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202110279 |