Graph Convolutional Dictionary Selection With L₂,ₚ Norm for Video Summarization

Video Summarization (VS) has become one of the most effective solutions for quickly understanding a large volume of video data. Dictionary selection with self representation and sparse regularization has demonstrated its promise for VS by formulating the VS problem as a sparse selection task on vide...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 01., Seite 1789-1804
1. Verfasser: Ma, Mingyang (VerfasserIn)
Weitere Verfasser: Mei, Shaohui, Wan, Shuai, Wang, Zhiyong, Hua, Xian-Sheng, Feng, David Dagan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM336338376
003 DE-627
005 20231225231922.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3146012  |2 doi 
028 5 2 |a pubmed24n1121.xml 
035 |a (DE-627)NLM336338376 
035 |a (NLM)35100116 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ma, Mingyang  |e verfasserin  |4 aut 
245 1 0 |a Graph Convolutional Dictionary Selection With L₂,ₚ Norm for Video Summarization 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.02.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Video Summarization (VS) has become one of the most effective solutions for quickly understanding a large volume of video data. Dictionary selection with self representation and sparse regularization has demonstrated its promise for VS by formulating the VS problem as a sparse selection task on video frames. However, existing dictionary selection models are generally designed only for data reconstruction, which results in the neglect of the inherent structured information among video frames. In addition, the sparsity commonly constrained by L2,1 norm is not strong enough, which causes the redundancy of keyframes, i.e., similar keyframes are selected. Therefore, to address these two issues, in this paper we propose a general framework called graph convolutional dictionary selection with L2,p ( ) norm (GCDS 2,p ) for both keyframe selection and skimming based summarization. Firstly, we incorporate graph embedding into dictionary selection to generate the graph embedding dictionary, which can take the structured information depicted in videos into account. Secondly, we propose to use L2,p ( ) norm constrained row sparsity, in which p can be flexibly set for two forms of video summarization. For keyframe selection, can be utilized to select diverse and representative keyframes; and for skimming, p=1 can be utilized to select key shots. In addition, an efficient iterative algorithm is devised to optimize the proposed model, and the convergence is theoretically proved. Experimental results including both keyframe selection and skimming based summarization on four benchmark datasets demonstrate the effectiveness and superiority of the proposed method 
650 4 |a Journal Article 
700 1 |a Mei, Shaohui  |e verfasserin  |4 aut 
700 1 |a Wan, Shuai  |e verfasserin  |4 aut 
700 1 |a Wang, Zhiyong  |e verfasserin  |4 aut 
700 1 |a Hua, Xian-Sheng  |e verfasserin  |4 aut 
700 1 |a Feng, David Dagan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 01., Seite 1789-1804  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:01  |g pages:1789-1804 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3146012  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 01  |h 1789-1804