Stretching Artifacts Identification for Quality Assessment of 3D-Synthesized Views

Existing Quality Assessment (QA) algorithms consider identifying "black-holes" to assess perceptual quality of 3D-synthesized views. However, advancements in rendering and inpainting techniques have made black-hole artifacts near obsolete. Further, 3D-synthesized views frequently suffer fr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 01., Seite 1737-1750
1. Verfasser: Sadbhawna (VerfasserIn)
Weitere Verfasser: Jakhetiya, Vinit, Mumtaz, Deebha, Subudhi, Badri Narayan, Guntuku, Sharath Chandra
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM33633835X
003 DE-627
005 20231225231922.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3145997  |2 doi 
028 5 2 |a pubmed24n1121.xml 
035 |a (DE-627)NLM33633835X 
035 |a (NLM)35100114 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sadbhawna  |e verfasserin  |4 aut 
245 1 0 |a Stretching Artifacts Identification for Quality Assessment of 3D-Synthesized Views 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.02.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Existing Quality Assessment (QA) algorithms consider identifying "black-holes" to assess perceptual quality of 3D-synthesized views. However, advancements in rendering and inpainting techniques have made black-hole artifacts near obsolete. Further, 3D-synthesized views frequently suffer from stretching artifacts due to occlusion that in turn affect perceptual quality. Existing QA algorithms are found to be inefficient in identifying these artifacts, as has been seen by their performance on the IETR dataset. We found, empirically, that there is a relationship between the number of blocks with stretching artifacts in view and the overall perceptual quality. Building on this observation, we propose a Convolutional Neural Network (CNN) based algorithm that identifies the blocks with stretching artifacts and incorporates the number of blocks with the stretching artifacts to predict the quality of 3D-synthesized views. To address the challenge with existing 3D-synthesized views dataset, which has few samples, we collect images from other related datasets to increase the sample size and increase generalization while training our proposed CNN-based algorithm. The proposed algorithm identifies blocks with stretching distortions and subsequently fuses them to predict perceptual quality without reference, achieving improvement in performance compared to existing no-reference QA algorithms that are not trained on the IETR dataset. The proposed algorithm can also identify the blocks with stretching artifacts efficiently, which can further be used in downstream applications to improve the quality of 3D views. Our source code is available online: https://github.com/sadbhawnathakur/3D-Image-Quality-Assessment 
650 4 |a Journal Article 
700 1 |a Jakhetiya, Vinit  |e verfasserin  |4 aut 
700 1 |a Mumtaz, Deebha  |e verfasserin  |4 aut 
700 1 |a Subudhi, Badri Narayan  |e verfasserin  |4 aut 
700 1 |a Guntuku, Sharath Chandra  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 01., Seite 1737-1750  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:01  |g pages:1737-1750 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3145997  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 01  |h 1737-1750