Are CDS spreads predictable during the Covid-19 pandemic? Forecasting based on SVM, GMDH, LSTM and Markov switching autoregression

© 2022 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications. - 1999. - 194(2022) vom: 15. Mai, Seite 116553
1. Verfasser: Vukovic, Darko B (VerfasserIn)
Weitere Verfasser: Romanyuk, Kirill, Ivashchenko, Sergey, Grigorieva, Elena M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Expert systems with applications
Schlagworte:Journal Article CDS spreads Covid-19 GMDH LSTM Markov switching autoregression SVM
LEADER 01000naa a22002652 4500
001 NLM336294840
003 DE-627
005 20231225231821.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.eswa.2022.116553  |2 doi 
028 5 2 |a pubmed24n1120.xml 
035 |a (DE-627)NLM336294840 
035 |a (NLM)35095216 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Vukovic, Darko B  |e verfasserin  |4 aut 
245 1 0 |a Are CDS spreads predictable during the Covid-19 pandemic? Forecasting based on SVM, GMDH, LSTM and Markov switching autoregression 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 21.12.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Elsevier Ltd. All rights reserved. 
520 |a This paper investigates the forecasting performance for credit default swap (CDS) spreads by Support Vector Machines (SVM), Group Method of Data Handling (GMDH), Long Short-Term Memory (LSTM) and Markov switching autoregression (MSA) for daily CDS spreads of the 513 leading US companies, in the period 2009-2020. The goal of this study is to test the forecasting performance of these methods before and during the Covid-19 pandemic and to check whether there are changes in the market efficiency. MSA outperforms all other methods most frequently. GMDH breaks the efficient market hypothesis more frequently (75%) than other methods. The change of the relative predictability during Covid-19 is small with some increase of the advantage of the investigated methods over a benchmark. We find that the market has been less efficient during Covid-19, however, there are no huge differences in prediction performances before and during the Covid-19 period 
650 4 |a Journal Article 
650 4 |a CDS spreads 
650 4 |a Covid-19 
650 4 |a GMDH 
650 4 |a LSTM 
650 4 |a Markov switching autoregression 
650 4 |a SVM 
700 1 |a Romanyuk, Kirill  |e verfasserin  |4 aut 
700 1 |a Ivashchenko, Sergey  |e verfasserin  |4 aut 
700 1 |a Grigorieva, Elena M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Expert systems with applications  |d 1999  |g 194(2022) vom: 15. Mai, Seite 116553  |w (DE-627)NLM098196782  |x 0957-4174  |7 nnns 
773 1 8 |g volume:194  |g year:2022  |g day:15  |g month:05  |g pages:116553 
856 4 0 |u http://dx.doi.org/10.1016/j.eswa.2022.116553  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 194  |j 2022  |b 15  |c 05  |h 116553