An improved representation of the relationship between photosynthesis and stomatal conductance leads to more stable estimation of conductance parameters and improves the goodness-of-fit across diverse data sets

© 2022 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 28(2022), 11 vom: 28. Juni, Seite 3537-3556
1. Verfasser: Lamour, Julien (VerfasserIn)
Weitere Verfasser: Davidson, Kenneth J, Ely, Kim S, Le Moguédec, Gilles, Leakey, Andrew D B, Li, Qianyu, Serbin, Shawn P, Rogers, Alistair
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Dataset Journal Article leaf gas exchange minimum conductance optimality model residual conductance stomatal conductance trait covariation transpiration water use efficiency mehr... Water 059QF0KO0R Carbon Dioxide 142M471B3J
LEADER 01000naa a22002652 4500
001 NLM336243944
003 DE-627
005 20231225231710.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.16103  |2 doi 
028 5 2 |a pubmed24n1120.xml 
035 |a (DE-627)NLM336243944 
035 |a (NLM)35090072 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lamour, Julien  |e verfasserin  |4 aut 
245 1 3 |a An improved representation of the relationship between photosynthesis and stomatal conductance leads to more stable estimation of conductance parameters and improves the goodness-of-fit across diverse data sets 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.05.2022 
500 |a Date Revised 14.05.2022 
500 |a published: Print-Electronic 
500 |a CommentIn: Glob Chang Biol. 2022 Jun;28(11):3484-3485. - PMID 35366341 
500 |a Citation Status MEDLINE 
520 |a © 2022 John Wiley & Sons Ltd. 
520 |a Stomata play a central role in surface-atmosphere exchange by controlling the flux of water and CO2 between the leaf and the atmosphere. Representation of stomatal conductance (gsw ) is therefore an essential component of models that seek to simulate water and CO2 exchange in plants and ecosystems. For given environmental conditions at the leaf surface (CO2 concentration and vapor pressure deficit or relative humidity), models typically assume a linear relationship between gsw and photosynthetic CO2 assimilation (A). However, measurement of leaf-level gsw response curves to changes in A are rare, particularly in the tropics, resulting in only limited data to evaluate this key assumption. Here, we measured the response of gsw and A to irradiance in six tropical species at different leaf phenological stages. We showed that the relationship between gsw and A was not linear, challenging the key assumption upon which optimality theory is based-that the marginal cost of water gain is constant. Our data showed that increasing A resulted in a small increase in gsw at low irradiance, but a much larger increase at high irradiance. We reformulated the popular Unified Stomatal Optimization (USO) model to account for this phenomenon and to enable consistent estimation of the key conductance parameters g0 and g1 . Our modification of the USO model improved the goodness-of-fit and reduced bias, enabling robust estimation of conductance parameters at any irradiance. In addition, our modification revealed previously undetectable relationships between the stomatal slope parameter g1 and other leaf traits. We also observed nonlinear behavior between A and gsw in independent data sets that included data collected from attached and detached leaves, and from plants grown at elevated CO2 concentration. We propose that this empirical modification of the USO model can improve the measurement of gsw parameters and the estimation of plant and ecosystem-scale water and CO2  fluxes 
650 4 |a Dataset 
650 4 |a Journal Article 
650 4 |a leaf gas exchange 
650 4 |a minimum conductance 
650 4 |a optimality model 
650 4 |a residual conductance 
650 4 |a stomatal conductance 
650 4 |a trait covariation 
650 4 |a transpiration 
650 4 |a water use efficiency 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
650 7 |a Carbon Dioxide  |2 NLM 
650 7 |a 142M471B3J  |2 NLM 
700 1 |a Davidson, Kenneth J  |e verfasserin  |4 aut 
700 1 |a Ely, Kim S  |e verfasserin  |4 aut 
700 1 |a Le Moguédec, Gilles  |e verfasserin  |4 aut 
700 1 |a Leakey, Andrew D B  |e verfasserin  |4 aut 
700 1 |a Li, Qianyu  |e verfasserin  |4 aut 
700 1 |a Serbin, Shawn P  |e verfasserin  |4 aut 
700 1 |a Rogers, Alistair  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 28(2022), 11 vom: 28. Juni, Seite 3537-3556  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:28  |g year:2022  |g number:11  |g day:28  |g month:06  |g pages:3537-3556 
856 4 0 |u http://dx.doi.org/10.1111/gcb.16103  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 11  |b 28  |c 06  |h 3537-3556