IoT-based automated water pollution treatment using machine learning classifiers

Water is one of the most vital sources for the survival of life. In the globe, the accessibility of water in safe and healthy ways is a major concern. The consumption of unsafe water may lead to health risks. Therefore, it is necessary to classify and monitor the quality of water, but the main issue...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Environmental technology. - 1993. - 45(2024), 12 vom: 01. Apr., Seite 2299-2307
1. Verfasser: AlZubi, Ahmad Ali (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Environmental technology
Schlagworte:Journal Article KNN LPWAN Node MCU SVM sensors
LEADER 01000caa a22002652 4500
001 NLM336183461
003 DE-627
005 20240419231956.0
007 cr uuu---uuuuu
008 231225s2024 xx |||||o 00| ||eng c
024 7 |a 10.1080/09593330.2022.2034978  |2 doi 
028 5 2 |a pubmed24n1380.xml 
035 |a (DE-627)NLM336183461 
035 |a (NLM)35083949 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a AlZubi, Ahmad Ali  |e verfasserin  |4 aut 
245 1 0 |a IoT-based automated water pollution treatment using machine learning classifiers 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.04.2024 
500 |a Date Revised 19.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Water is one of the most vital sources for the survival of life. In the globe, the accessibility of water in safe and healthy ways is a major concern. The consumption of unsafe water may lead to health risks. Therefore, it is necessary to classify and monitor the quality of water, but the main issue is that sufficient parametric quality measures are not available with advanced technology. To overcome the above issue, this paper presents an IoT-based automated water quality monitoring system using cloud and machine learning algorithms. It contains various sensor devices such as pH sensors, temperature sensors, turbidity sensors, and conductivity sensors. The classification of water quality in an accurate way is achieved by using the fusion of K-Nearest Neighbour (KNN) and Support Vector Machine (SVM). The sensor values are generated and transferred in the cloud server via Node MCU with low power wide area networks (LPWAN). This proposed work can replace the classification and monitoring of the traditional method to qualify the water status. It helps to save human beings from various infections and diseases caused by the unsafe usage of water. Water quality classification is very important to create an eco-friendly environment. This proposed machine learning algorithm KNN + SVM is tested by 10-fold cross-validation and the highest accuracy is 0.94, when compared with the existing algorithm 
650 4 |a Journal Article 
650 4 |a KNN 
650 4 |a LPWAN 
650 4 |a Node MCU 
650 4 |a SVM 
650 4 |a sensors 
773 0 8 |i Enthalten in  |t Environmental technology  |d 1993  |g 45(2024), 12 vom: 01. Apr., Seite 2299-2307  |w (DE-627)NLM098202545  |x 1479-487X  |7 nnns 
773 1 8 |g volume:45  |g year:2024  |g number:12  |g day:01  |g month:04  |g pages:2299-2307 
856 4 0 |u http://dx.doi.org/10.1080/09593330.2022.2034978  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2024  |e 12  |b 01  |c 04  |h 2299-2307