VCRNet : Visual Compensation Restoration Network for No-Reference Image Quality Assessment

Guided by the free-energy principle, generative adversarial networks (GAN)-based no-reference image quality assessment (NR-IQA) methods have improved the image quality prediction accuracy. However, the GAN cannot well handle the restoration task for the free-energy principle-guided NR-IQA methods, e...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 01., Seite 1613-1627
1. Verfasser: Pan, Zhaoqing (VerfasserIn)
Weitere Verfasser: Yuan, Feng, Lei, Jianjun, Fang, Yuming, Shao, Xiao, Kwong, Sam
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM336154445
003 DE-627
005 20231225231507.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3144892  |2 doi 
028 5 2 |a pubmed24n1120.xml 
035 |a (DE-627)NLM336154445 
035 |a (NLM)35081029 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pan, Zhaoqing  |e verfasserin  |4 aut 
245 1 0 |a VCRNet  |b Visual Compensation Restoration Network for No-Reference Image Quality Assessment 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.02.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Guided by the free-energy principle, generative adversarial networks (GAN)-based no-reference image quality assessment (NR-IQA) methods have improved the image quality prediction accuracy. However, the GAN cannot well handle the restoration task for the free-energy principle-guided NR-IQA methods, especially for the severely destroyed images, which results in that the quality reconstruction relationship between the distorted image and its restored image cannot be accurately built. To address this problem, a visual compensation restoration network (VCRNet)-based NR-IQA method is proposed, which uses a non-adversarial model to efficiently handle the distorted image restoration task. The proposed VCRNet consists of a visual restoration network and a quality estimation network. To accurately build the quality reconstruction relationship between the distorted image and its restored image, a visual compensation module, an optimized asymmetric residual block, and an error map-based mixed loss function, are proposed for increasing the restoration capability of the visual restoration network. For further addressing the NR-IQA problem of severely destroyed images, the multi-level restoration features which are obtained from the visual restoration network are used for the image quality estimation. To prove the effectiveness of the proposed VCRNet, seven representative IQA databases are used, and experimental results show that the proposed VCRNet achieves the state-of-the-art image quality prediction accuracy. The implementation of the proposed VCRNet has been released at https://github.com/NUIST-Videocoding/VCRNet 
650 4 |a Journal Article 
700 1 |a Yuan, Feng  |e verfasserin  |4 aut 
700 1 |a Lei, Jianjun  |e verfasserin  |4 aut 
700 1 |a Fang, Yuming  |e verfasserin  |4 aut 
700 1 |a Shao, Xiao  |e verfasserin  |4 aut 
700 1 |a Kwong, Sam  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 01., Seite 1613-1627  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:01  |g pages:1613-1627 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3144892  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 01  |h 1613-1627