Reference-Based Deep Line Art Video Colorization

Coloring line art images based on the colors of reference images is a crucial stage in animation production, which is time-consuming and tedious. This paper proposes a deep architecture to automatically color line art videos with the same color style as the given reference images. Our framework cons...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 29(2023), 6 vom: 02. Juni, Seite 2965-2979
1. Verfasser: Shi, Min (VerfasserIn)
Weitere Verfasser: Zhang, Jia-Qi, Chen, Shu-Yu, Gao, Lin, Lai, Yu-Kun, Zhang, Fang-Lue
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM336118201
003 DE-627
005 20231225231417.0
007 cr uuu---uuuuu
008 231225s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2022.3146000  |2 doi 
028 5 2 |a pubmed24n1120.xml 
035 |a (DE-627)NLM336118201 
035 |a (NLM)35077365 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shi, Min  |e verfasserin  |4 aut 
245 1 0 |a Reference-Based Deep Line Art Video Colorization 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.05.2023 
500 |a Date Revised 04.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Coloring line art images based on the colors of reference images is a crucial stage in animation production, which is time-consuming and tedious. This paper proposes a deep architecture to automatically color line art videos with the same color style as the given reference images. Our framework consists of a color transform network and a temporal refinement network based on 3U-net. The color transform network takes the target line art images as well as the line art and color images of the reference images as input and generates corresponding target color images. To cope with the large differences between each target line art image and the reference color images, we propose a distance attention layer that utilizes non-local similarity matching to determine the region correspondences between the target image and the reference images and transforms the local color information from the references to the target. To ensure global color style consistency, we further incorporate Adaptive Instance Normalization (AdaIN) with the transformation parameters obtained from a multiple-layer AdaIN that describes the global color style of the references extracted by an embedder network. The temporal refinement network learns spatiotemporal features through 3D convolutions to ensure the temporal color consistency of the results. Our model can achieve even better coloring results by fine-tuning the parameters with only a small number of samples when dealing with an animation of a new style. To evaluate our method, we build a line art coloring dataset. Experiments show that our method achieves the best performance on line art video coloring compared to the current state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Zhang, Jia-Qi  |e verfasserin  |4 aut 
700 1 |a Chen, Shu-Yu  |e verfasserin  |4 aut 
700 1 |a Gao, Lin  |e verfasserin  |4 aut 
700 1 |a Lai, Yu-Kun  |e verfasserin  |4 aut 
700 1 |a Zhang, Fang-Lue  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 29(2023), 6 vom: 02. Juni, Seite 2965-2979  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:29  |g year:2023  |g number:6  |g day:02  |g month:06  |g pages:2965-2979 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2022.3146000  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2023  |e 6  |b 02  |c 06  |h 2965-2979