Refine-Net : Normal Refinement Neural Network for Noisy Point Clouds

Point normal, as an intrinsic geometric property of 3D objects, not only serves conventional geometric tasks such as surface consolidation and reconstruction, but also facilitates cutting-edge learning-based techniques for shape analysis and generation. In this paper, we propose a normal refinement...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 1 vom: 02. Jan., Seite 946-963
1. Verfasser: Zhou, Haoran (VerfasserIn)
Weitere Verfasser: Chen, Honghua, Zhang, Yingkui, Wei, Mingqiang, Xie, Haoran, Wang, Jun, Lu, Tong, Qin, Jing, Zhang, Xiao-Ping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM336118163
003 DE-627
005 20231225231417.0
007 cr uuu---uuuuu
008 231225s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3145877  |2 doi 
028 5 2 |a pubmed24n1120.xml 
035 |a (DE-627)NLM336118163 
035 |a (NLM)35077361 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Haoran  |e verfasserin  |4 aut 
245 1 0 |a Refine-Net  |b Normal Refinement Neural Network for Noisy Point Clouds 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.04.2023 
500 |a Date Revised 05.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Point normal, as an intrinsic geometric property of 3D objects, not only serves conventional geometric tasks such as surface consolidation and reconstruction, but also facilitates cutting-edge learning-based techniques for shape analysis and generation. In this paper, we propose a normal refinement network, called Refine-Net, to predict accurate normals for noisy point clouds. Traditional normal estimation wisdom heavily depends on priors such as surface shapes or noise distributions, while learning-based solutions settle for single types of hand-crafted features. Differently, our network is designed to refine the initial normal of each point by extracting additional information from multiple feature representations. To this end, several feature modules are developed and incorporated into Refine-Net by a novel connection module. Besides the overall network architecture of Refine-Net, we propose a new multi-scale fitting patch selection scheme for the initial normal estimation, by absorbing geometry domain knowledge. Also, Refine-Net is a generic normal estimation framework: 1) point normals obtained from other methods can be further refined, and 2) any feature module related to the surface geometric structures can be potentially integrated into the framework. Qualitative and quantitative evaluations demonstrate the clear superiority of Refine-Net over the state-of-the-arts on both synthetic and real-scanned datasets 
650 4 |a Journal Article 
700 1 |a Chen, Honghua  |e verfasserin  |4 aut 
700 1 |a Zhang, Yingkui  |e verfasserin  |4 aut 
700 1 |a Wei, Mingqiang  |e verfasserin  |4 aut 
700 1 |a Xie, Haoran  |e verfasserin  |4 aut 
700 1 |a Wang, Jun  |e verfasserin  |4 aut 
700 1 |a Lu, Tong  |e verfasserin  |4 aut 
700 1 |a Qin, Jing  |e verfasserin  |4 aut 
700 1 |a Zhang, Xiao-Ping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 1 vom: 02. Jan., Seite 946-963  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:1  |g day:02  |g month:01  |g pages:946-963 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3145877  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 1  |b 02  |c 01  |h 946-963