Key.Net : Keypoint Detection by Handcrafted and Learned CNN Filters Revisited

We introduce a novel approach for keypoint detection that combines handcrafted and learned CNN filters within a shallow multi-scale architecture. Handcrafted filters provide anchor structures for learned filters, which localize, score, and rank repeatable features. Scale-space representation is used...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 1 vom: 02. Jan., Seite 698-711
1. Verfasser: Barroso-Laguna, Axel (VerfasserIn)
Weitere Verfasser: Mikolajczyk, Krystian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM336118155
003 DE-627
005 20231225231417.0
007 cr uuu---uuuuu
008 231225s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3145820  |2 doi 
028 5 2 |a pubmed24n1120.xml 
035 |a (DE-627)NLM336118155 
035 |a (NLM)35077360 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Barroso-Laguna, Axel  |e verfasserin  |4 aut 
245 1 0 |a Key.Net  |b Keypoint Detection by Handcrafted and Learned CNN Filters Revisited 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.04.2023 
500 |a Date Revised 05.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We introduce a novel approach for keypoint detection that combines handcrafted and learned CNN filters within a shallow multi-scale architecture. Handcrafted filters provide anchor structures for learned filters, which localize, score, and rank repeatable features. Scale-space representation is used within the network to extract keypoints at different levels. We design a loss function to detect robust features that exist across a range of scales and to maximize the repeatability score. Our Key.Net model is trained on data synthetically created from ImageNet and evaluated on HPatches and other benchmarks. Results show that our approach outperforms state-of-the-art detectors in terms of repeatability, matching performance, and complexity. Key.Net implementations in TensorFlow and PyTorch are available online 
650 4 |a Journal Article 
700 1 |a Mikolajczyk, Krystian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 1 vom: 02. Jan., Seite 698-711  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:1  |g day:02  |g month:01  |g pages:698-711 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3145820  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 1  |b 02  |c 01  |h 698-711