End-to-End Handwritten Paragraph Text Recognition Using a Vertical Attention Network

Unconstrained handwritten text recognition remains challenging for computer vision systems. Paragraph text recognition is traditionally achieved by two models: the first one for line segmentation and the second one for text line recognition. We propose a unified end-to-end model using hybrid attenti...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 1 vom: 02. Jan., Seite 508-524
1. Verfasser: Coquenet, Denis (VerfasserIn)
Weitere Verfasser: Chatelain, Clement, Paquet, Thierry
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Unconstrained handwritten text recognition remains challenging for computer vision systems. Paragraph text recognition is traditionally achieved by two models: the first one for line segmentation and the second one for text line recognition. We propose a unified end-to-end model using hybrid attention to tackle this task. This model is designed to iteratively process a paragraph image line by line. It can be split into three modules. An encoder generates feature maps from the whole paragraph image. Then, an attention module recurrently generates a vertical weighted mask enabling to focus on the current text line features. This way, it performs a kind of implicit line segmentation. For each text line features, a decoder module recognizes the character sequence associated, leading to the recognition of a whole paragraph. We achieve state-of-the-art character error rate at paragraph level on three popular datasets: 1.91% for RIMES, 4.45% for IAM and 3.59% for READ 2016. Our code and trained model weights are available at https://github.com/FactoDeepLearning/VerticalAttentionOCR
Beschreibung:Date Completed 05.04.2023
Date Revised 05.04.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2022.3144899