Imposing Semantic Consistency of Local Descriptors for Few-Shot Learning

Few-shot learning suffers from the scarcity of labeled training data. Regarding local descriptors of an image as representations for the image could greatly augment existing labeled training data. Existing local descriptor based few-shot learning methods have taken advantage of this fact but ignore...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 24., Seite 1587-1600
1. Verfasser: Cheng, Jun (VerfasserIn)
Weitere Verfasser: Hao, Fusheng, Liu, Liu, Tao, Dacheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM336077815
003 DE-627
005 20250302225621.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3143692  |2 doi 
028 5 2 |a pubmed25n1120.xml 
035 |a (DE-627)NLM336077815 
035 |a (NLM)35073265 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cheng, Jun  |e verfasserin  |4 aut 
245 1 0 |a Imposing Semantic Consistency of Local Descriptors for Few-Shot Learning 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.02.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Few-shot learning suffers from the scarcity of labeled training data. Regarding local descriptors of an image as representations for the image could greatly augment existing labeled training data. Existing local descriptor based few-shot learning methods have taken advantage of this fact but ignore that the semantics exhibited by local descriptors may not be relevant to the image semantic. In this paper, we deal with this issue from a new perspective of imposing semantic consistency of local descriptors of an image. Our proposed method consists of three modules. The first one is a local descriptor extractor module, which can extract a large number of local descriptors in a single forward pass. The second one is a local descriptor compensator module, which compensates the local descriptors with the image-level representation, in order to align the semantics between local descriptors and the image semantic. The third one is a local descriptor based contrastive loss function, which supervises the learning of the whole pipeline, with the aim of making the semantics carried by the local descriptors of an image relevant and consistent with the image semantic. Theoretical analysis demonstrates the generalization ability of our proposed method. Comprehensive experiments conducted on benchmark datasets indicate that our proposed method achieves the semantic consistency of local descriptors and the state-of-the-art performance 
650 4 |a Journal Article 
700 1 |a Hao, Fusheng  |e verfasserin  |4 aut 
700 1 |a Liu, Liu  |e verfasserin  |4 aut 
700 1 |a Tao, Dacheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 24., Seite 1587-1600  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:31  |g year:2022  |g day:24  |g pages:1587-1600 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3143692  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 24  |h 1587-1600