|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM336075170 |
003 |
DE-627 |
005 |
20231225231318.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202110013
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1120.xml
|
035 |
|
|
|a (DE-627)NLM336075170
|
035 |
|
|
|a (NLM)35072957
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yuan, Yongjiu
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Ultrafast Shaped Laser Induced Synthesis of MXene Quantum Dots/Graphene for Transparent Supercapacitors
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 24.03.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a Ultratransparent electrodes have attracted considerable attention in optoelectronics and energy technology. However, balancing energy storage capability and transparency remains challenging. Herein, an in situ strategy employing a temporally and spatially shaped femtosecond laser is reported for photochemically synthesizing of MXene quantum dots (MQDs) uniformly attached to laser reduced graphene oxide (LRGO) with exceptional electrochemical capacitance and ultrahigh transparency. The mechanism and plasma dynamics of the synthesis process are analyzed and observed at the same time. The unique MQDs loaded on LRGO greatly improve the specific surface area of the electrode due to the nanoscale size and additional edge states. The MQD/LRGO supercapacitor has high flexibility and durability, ultrahigh energy density (2.04 × 10-3 mWh cm-2 ), long cycle life (97.6% after 12 000 cycles), and excellent capacitance (10.42 mF cm-2 ) with both high transparency (transmittance over 90%) and high performance. Furthermore, this method provides a means of preparing nanostructured composite electrode materials and exploiting quantum capacitance effects for energy storage
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a MXenes
|
650 |
|
4 |
|a energy storage
|
650 |
|
4 |
|a graphene
|
650 |
|
4 |
|a quantum dots
|
650 |
|
4 |
|a shaped femtosecond laser
|
700 |
1 |
|
|a Jiang, Lan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Xin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zuo, Pei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Xueqiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lian, Yiling
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ma, Yunlong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liang, Misheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Yang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Qu, Liangti
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 12 vom: 24. März, Seite e2110013
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:12
|g day:24
|g month:03
|g pages:e2110013
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202110013
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 12
|b 24
|c 03
|h e2110013
|