Edge Rich Ultrathin Layered MoS2 Nanostructures for Superior Visible Light Photocatalytic Activity

Nanostructures of layered 2D materials have been proven one of the significant recent trends for visible-light-driven photocatalysis because of their unique morphology, effective optical adsorption, and rich active sites. Herein, we synthesized ultrathin-layered MoS2 nanoflowers and nanosheets with...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 38(2022), 4 vom: 01. Feb., Seite 1578-1588
1. Verfasser: Sahoo, Dhirendra (VerfasserIn)
Weitere Verfasser: Shakya, Jyoti, Ali, Nasir, Yoo, Won Jong, Kaviraj, Bhaskar
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Nanostructures of layered 2D materials have been proven one of the significant recent trends for visible-light-driven photocatalysis because of their unique morphology, effective optical adsorption, and rich active sites. Herein, we synthesized ultrathin-layered MoS2 nanoflowers and nanosheets with rich active sites by using a facile hydrothermal technique. The photocatalytic performance of the as-synthesized MoS2 nanoflowers (NF) and nanosheets (NS) were investigated for the photodegradation of MB (methylene blue), MG (malachite Green), and RhB (rhodamine B) dye under visible light irradiations. Ultrathin-layered nanoflowers showed faster degradation (96% in 150 min) in RhB under visible light irradiation, probably due to a large number of active sites and high available surface area. The kinetic study demonstrated that the first-order kinetic model best explained the process of photodegradation. The MoS2 nanoflowers catalysts has similar catalytic performance after four consecutive cyclic performances, demonstrating their good stability. The results showed that the MoS2 nanoflowers have outstanding visible-light-driven photocatalytic activity and could be an effective catalyst for industrial wastewater treatment
Beschreibung:Date Revised 01.02.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c03013