Decision support analysis for risk identification and control of patients affected by COVID-19 based on Bayesian Networks

© 2022 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications. - 1999. - 196(2022) vom: 15. Juni, Seite 116547
1. Verfasser: Shen, Jiang (VerfasserIn)
Weitere Verfasser: Liu, Fusheng, Xu, Man, Fu, Lipeng, Dong, Zhenhe, Wu, Jiachao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Expert systems with applications
Schlagworte:Journal Article Bayesian networks (BNs) COVID-19 Decision support analysis Machine learning Risk identification and control
LEADER 01000caa a22002652 4500
001 NLM336032625
003 DE-627
005 20240909232107.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.eswa.2022.116547  |2 doi 
028 5 2 |a pubmed24n1528.xml 
035 |a (DE-627)NLM336032625 
035 |a (NLM)35068709 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shen, Jiang  |e verfasserin  |4 aut 
245 1 0 |a Decision support analysis for risk identification and control of patients affected by COVID-19 based on Bayesian Networks 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Elsevier Ltd. All rights reserved. 
520 |a In the context of the outbreak of coronavirus disease (COVID-19), this paper proposes an innovative and systematic decision support model based on Bayesian networks (BNs) to identify and control the risk of COVID-19 patients spreading the virus, which requires the following three steps. First, by consulting the related literature and combining this with expert knowledge, we identify and classify the characteristics (risk factors) of COVID-19 and obtain a conceptual framework for COVID-19 Risk Assessment Bayesian Networks (CRABNs). Second, data on COVID-19 patients with expert scoring results on patient risk levels were collected from hospitals in Hubei Province of China and are used as the training set, and the structure and parameters of the CRABNs model are obtained through machine learning. Finally, we propose two indicators, namely, Model Bias and Model Accuracy, and use the remaining data to verify the feasibility and effectiveness of the CRABNs model to ensure that there are no significant differences between the predicted results of the model and the actual results provided by experts who have relevant experience in treating COVID-19. At the same time, we compared the CRABNs model with the support vector machine (SVM), random forest (RF), and k-nearest neighbour (KNN) models through four indicators: accuracy, sensitivity, specificity, and F-score. The results suggest the reliability of the model and show that it has promising application potential. The proposed model can be used globally by doctors in hospitals as a decision support tool to improve the accuracy of assessing the severity of COVID-19 symptoms in patients. Furthermore, with the further improvement of the model in the future, it can be used for risk assessments in the field of epidemics 
650 4 |a Journal Article 
650 4 |a Bayesian networks (BNs) 
650 4 |a COVID-19 
650 4 |a Decision support analysis 
650 4 |a Machine learning 
650 4 |a Risk identification and control 
700 1 |a Liu, Fusheng  |e verfasserin  |4 aut 
700 1 |a Xu, Man  |e verfasserin  |4 aut 
700 1 |a Fu, Lipeng  |e verfasserin  |4 aut 
700 1 |a Dong, Zhenhe  |e verfasserin  |4 aut 
700 1 |a Wu, Jiachao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Expert systems with applications  |d 1999  |g 196(2022) vom: 15. Juni, Seite 116547  |w (DE-627)NLM098196782  |x 0957-4174  |7 nnns 
773 1 8 |g volume:196  |g year:2022  |g day:15  |g month:06  |g pages:116547 
856 4 0 |u http://dx.doi.org/10.1016/j.eswa.2022.116547  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 196  |j 2022  |b 15  |c 06  |h 116547