Stimuli-Responsive Liquid Crystal Printheads for Spatial and Temporal Control of Polymerization

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 12 vom: 30. März, Seite e2106535
1. Verfasser: Wang, Xin (VerfasserIn)
Weitere Verfasser: Sun, Hao, Kim, Young-Ki, Wright, Daniel B, Tsuei, Michael, Gianneschi, Nathan C, Abbott, Nicholas L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 3D printing liquid crystals materials computation polymerization unconventional triggers
LEADER 01000naa a22002652 4500
001 NLM336001169
003 DE-627
005 20231225231137.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202106535  |2 doi 
028 5 2 |a pubmed24n1119.xml 
035 |a (DE-627)NLM336001169 
035 |a (NLM)35065542 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Xin  |e verfasserin  |4 aut 
245 1 0 |a Stimuli-Responsive Liquid Crystal Printheads for Spatial and Temporal Control of Polymerization 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Wiley-VCH GmbH. 
520 |a Polymerization reactions triggered by stimuli play a pivotal role in materials science, with applications ranging from lithography to biomedicine to adaptive materials. However, the development of chemically triggered, stimuli-responsive systems that can confer spatial and temporal control on polymerization remains a challenge. Herein, chemical-stimuli-induced polymerization based on a liquid crystal (LC) printhead is presented. The LC responds to a local chemical stimulus at its aqueous interface, resulting in the ejection of initiator into the solution to trigger polymerization. Various LC printhead geometries are designed, allowing programming of: i) bulk solution polymerization, ii) synthesis of a thin surface-confined polymeric coating, iii) polymerization-induced self-assembly of block copolymers to form various nanostructures (sphere, worm-like, and vesicles), and iv) 3D polymeric structures printed according to local solution conditions. The approach is demonstrated using amphiphiles, multivalent ions, and biomolecules as stimuli 
650 4 |a Journal Article 
650 4 |a 3D printing 
650 4 |a liquid crystals 
650 4 |a materials computation 
650 4 |a polymerization 
650 4 |a unconventional triggers 
700 1 |a Sun, Hao  |e verfasserin  |4 aut 
700 1 |a Kim, Young-Ki  |e verfasserin  |4 aut 
700 1 |a Wright, Daniel B  |e verfasserin  |4 aut 
700 1 |a Tsuei, Michael  |e verfasserin  |4 aut 
700 1 |a Gianneschi, Nathan C  |e verfasserin  |4 aut 
700 1 |a Abbott, Nicholas L  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 12 vom: 30. März, Seite e2106535  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:12  |g day:30  |g month:03  |g pages:e2106535 
856 4 0 |u http://dx.doi.org/10.1002/adma.202106535  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 12  |b 30  |c 03  |h e2106535