Towards Disentangling Latent Space for Unsupervised Semantic Face Editing
Facial attributes in StyleGAN generated images are entangled in the latent space which makes it very difficult to independently control a specific attribute without affecting the others. Supervised attribute editing requires annotated training data which is difficult to obtain and limits the editabl...
Ausführliche Beschreibung
Bibliographische Detailangaben
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 19., Seite 1475-1489
|
1. Verfasser: |
Liu, Kanglin
(VerfasserIn) |
Weitere Verfasser: |
Cao, Gaofeng,
Zhou, Fei,
Liu, Bozhi,
Duan, Jiang,
Qiu, Guoping |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|
Schlagworte: | Journal Article |