Deep Ranking Exemplar-Based Dynamic Scene Deblurring

Dynamic scene deblurring is a challenging problem as it is difficult to be modeled mathematically. Benefiting from the deep convolutional neural networks, this problem has been significantly advanced by the end-to-end network architectures. However, the success of these methods is mainly due to simp...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 19., Seite 2245-2256
1. Verfasser: Li, Yaowei (VerfasserIn)
Weitere Verfasser: Pan, Jinshan, Luo, Ye, Lu, Jianwei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM335796109
003 DE-627
005 20231225230657.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3142518  |2 doi 
028 5 2 |a pubmed24n1119.xml 
035 |a (DE-627)NLM335796109 
035 |a (NLM)35044913 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Yaowei  |e verfasserin  |4 aut 
245 1 0 |a Deep Ranking Exemplar-Based Dynamic Scene Deblurring 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Dynamic scene deblurring is a challenging problem as it is difficult to be modeled mathematically. Benefiting from the deep convolutional neural networks, this problem has been significantly advanced by the end-to-end network architectures. However, the success of these methods is mainly due to simply stacking network layers. In addition, the methods based on the end-to-end network architectures usually estimate latent images in a regression way which does not preserve the structural details. In this paper, we propose an exemplar-based method to solve dynamic scene deblurring problem. To explore the properties of the exemplars, we propose a siamese encoder network and a shallow encoder network to respectively extract input features and exemplar features and then develop a rank module to explore useful features for better blur removing, where the rank modules are applied to the last three layers of encoder, respectively. The proposed method can be further extended to the way of multi-scale, which enables to recover more texture from the exemplar. Extensive experiments show that our method achieves significant improvements in both quantitative and qualitative evaluations 
650 4 |a Journal Article 
700 1 |a Pan, Jinshan  |e verfasserin  |4 aut 
700 1 |a Luo, Ye  |e verfasserin  |4 aut 
700 1 |a Lu, Jianwei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 19., Seite 2245-2256  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:19  |g pages:2245-2256 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3142518  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 19  |h 2245-2256