Exploring Local Detail Perception for Scene Sketch Semantic Segmentation

In this paper, we aim to explore the fine-grained perception ability of deep models for the newly proposed scene sketch semantic segmentation task. Scene sketches are abstract drawings containing multiple related objects. It plays a vital role in daily communication and human-computer interaction. T...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 19., Seite 1447-1461
1. Verfasser: Ge, Ce (VerfasserIn)
Weitere Verfasser: Sun, Haifeng, Song, Yi-Zhe, Ma, Zhanyu, Liao, Jianxin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM335796095
003 DE-627
005 20231225230657.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3142511  |2 doi 
028 5 2 |a pubmed24n1119.xml 
035 |a (DE-627)NLM335796095 
035 |a (NLM)35044912 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ge, Ce  |e verfasserin  |4 aut 
245 1 0 |a Exploring Local Detail Perception for Scene Sketch Semantic Segmentation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.01.2022 
500 |a Date Revised 31.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In this paper, we aim to explore the fine-grained perception ability of deep models for the newly proposed scene sketch semantic segmentation task. Scene sketches are abstract drawings containing multiple related objects. It plays a vital role in daily communication and human-computer interaction. The study has only recently started due to a main obstacle of the absence of large-scale datasets. The currently available dataset SketchyScene is composed of clip art-style edge maps, which lacks abstractness and diversity. To drive further research, we contribute two new large-scale datasets based on real hand-drawn object sketches. A general automatic scene sketch synthesis process is developed to assist with new dataset composition. Furthermore, we propose to enhancing local detail perception in deep models to realize accurate stroke-oriented scene sketch segmentation. Due to the inherent differences between hand-drawn sketches and natural images, extreme low-level local features of strokes are incorporated to improve detail discrimination. Stroke masks are also integrated into model training to guide the learning attention. Extensive experiments are conducted on three large-scale scene sketch datasets. Our method achieves state-of-the-art performance under four evaluation metrics and yields meaningful interpretability via visual analytics 
650 4 |a Journal Article 
700 1 |a Sun, Haifeng  |e verfasserin  |4 aut 
700 1 |a Song, Yi-Zhe  |e verfasserin  |4 aut 
700 1 |a Ma, Zhanyu  |e verfasserin  |4 aut 
700 1 |a Liao, Jianxin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 19., Seite 1447-1461  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:19  |g pages:1447-1461 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3142511  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 19  |h 1447-1461