High-Performance Ternary Perovskite-Organic Solar Cells
© 2022 Wiley-VCH GmbH.
Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 13 vom: 01. Apr., Seite e2109348 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2022
|
Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
Sujets: | Journal Article low-optical-gap conjugated organic molecules perovskite solar cells photocurrent hysteresis power conversion efficiency ternary perovskite-organic composites |
Résumé: | © 2022 Wiley-VCH GmbH. Perovskite solar cells in which 2D perovskites are incorporated within a 3D perovskite network exhibit improved stability with respect to purely 3D systems, but lower record power conversion efficiencies (PCEs). Here, a breakthrough is reported in achieving enhanced PCEs, increased stability, and suppressed photocurrent hysteresis by incorporating n-type, low-optical-gap conjugated organic molecules into 2D:3D mixed perovskite composites. The resulting ternary perovskite-organic composites display extended absorption in the near-infrared region, improved film morphology, enlarged crystallinity, balanced charge transport, efficient photoinduced charge transfer, and suppressed counter-ion movement. As a result, the ternary perovskite-organic solar cells exhibit PCEs over 23%, which are among the best PCEs for perovskite solar cells with p-i-n device structure. Moreover, the ternary perovskite-organic solar cells possess dramatically enhanced stability and diminished photocurrent hysteresis. All these results demonstrate that the strategy of exploiting ternary perovskite-organic composite thin films provides a facile way to realize high-performance perovskite solar cells |
---|---|
Description: | Date Revised 01.04.2022 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202109348 |