Target Detection With Unconstrained Linear Mixture Model and Hierarchical Denoising Autoencoder in Hyperspectral Imagery

Hyperspectral imagery with very high spectral resolution provides a new insight for subtle nuances identification of similar substances. However, hyperspectral target detection faces significant challenges of intraclass dissimilarity and interclass similarity due to the unavoidable interference caus...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 01., Seite 1418-1432
1. Verfasser: Li, Yunsong (VerfasserIn)
Weitere Verfasser: Shi, Yanzi, Wang, Keyan, Xi, Bobo, Li, Jiaojiao, Gamba, Paolo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Hyperspectral imagery with very high spectral resolution provides a new insight for subtle nuances identification of similar substances. However, hyperspectral target detection faces significant challenges of intraclass dissimilarity and interclass similarity due to the unavoidable interference caused by atmosphere, illumination, and sensor noise. In order to effectively alleviate these spectral inconsistencies, this paper proposes a novel target detection method without strict assumptions on data distribution based on an unconstrained linear mixture model and deep learning. Our proposed detector firstly reduces interference via a specifically designed deep-learning-based hierarchical denoising autoencoder, and then carries out accurate detection with a two-step subspace projection, aiming at background suppression and target enhancement. Additionally, to generate representative background and reliable target samples required in the detection procedure, an efficient spatial-spectral unified endmember extraction method has been developed. Performance comparison with several state-of-the-art detection methods and further analysis on four real-world hyperspectral images demonstrate the effectiveness and efficiency of our proposed target detector
Beschreibung:Date Revised 26.01.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2022.3141843