|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM335720536 |
003 |
DE-627 |
005 |
20231225230513.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/nph.17971
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1119.xml
|
035 |
|
|
|a (DE-627)NLM335720536
|
035 |
|
|
|a (NLM)35037256
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Borsuk, Aleca M
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Structural organization of the spongy mesophyll
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 01.04.2022
|
500 |
|
|
|a Date Revised 31.07.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
|
520 |
|
|
|a Many plant leaves have two layers of photosynthetic tissue: the palisade and spongy mesophyll. Whereas palisade mesophyll consists of tightly packed columnar cells, the structure of spongy mesophyll is not well characterized and often treated as a random assemblage of irregularly shaped cells. Using micro-computed tomography imaging, topological analysis, and a comparative physiological framework, we examined the structure of the spongy mesophyll in 40 species from 30 genera with laminar leaves and reticulate venation. A spectrum of spongy mesophyll diversity encompassed two dominant phenotypes: first, an ordered, honeycomblike tissue structure that emerged from the spatial coordination of multilobed cells, conforming to the physical principles of Euler's law; and second, a less-ordered, isotropic network of cells. Phenotypic variation was associated with transitions in cell size, cell packing density, mesophyll surface-area-to-volume ratio, vein density, and maximum photosynthetic rate. These results show that simple principles may govern the organization and scaling of the spongy mesophyll in many plants and demonstrate the presence of structural patterns associated with leaf function. This improved understanding of mesophyll anatomy provides new opportunities for spatially explicit analyses of leaf development, physiology, and biomechanics
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
4 |
|a 3D
|
650 |
|
4 |
|a cellular organization
|
650 |
|
4 |
|a leaf anatomy
|
650 |
|
4 |
|a mesophyll
|
650 |
|
4 |
|a microCT
|
650 |
|
4 |
|a photosynthesis
|
700 |
1 |
|
|a Roddy, Adam B
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Théroux-Rancourt, Guillaume
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Brodersen, Craig R
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t The New phytologist
|d 1979
|g 234(2022), 3 vom: 17. Mai, Seite 946-960
|w (DE-627)NLM09818248X
|x 1469-8137
|7 nnns
|
773 |
1 |
8 |
|g volume:234
|g year:2022
|g number:3
|g day:17
|g month:05
|g pages:946-960
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/nph.17971
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 234
|j 2022
|e 3
|b 17
|c 05
|h 946-960
|