Fractional Super-Resolution of Voxelized Point Clouds

We present a method to super-resolve voxelized point clouds downsampled by a fractional factor, using lookup-tables (LUT) constructed from self-similarities from their own downsampled neighborhoods. The proposed method was developed to densify and to increase the precision of voxelized point clouds,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 01., Seite 1380-1390
1. Verfasser: Borges, Tomas M (VerfasserIn)
Weitere Verfasser: Garcia, Diogo C, de Queiroz, Ricardo L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We present a method to super-resolve voxelized point clouds downsampled by a fractional factor, using lookup-tables (LUT) constructed from self-similarities from their own downsampled neighborhoods. The proposed method was developed to densify and to increase the precision of voxelized point clouds, and can be used, for example, as improve compression and rendering. We super-resolve the geometry, but we also interpolate texture by averaging colors from adjacent neighbors, for completeness. Our technique, as we understand, is the first specifically developed for intra-frame super-resolution of voxelized point clouds, for arbitrary resampling scale factors. We present extensive test results over different point clouds, showing the effectiveness of the proposed approach against baseline methods
Beschreibung:Date Revised 26.01.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2022.3141611