Self-Generated Convective Flows Enhance the Rates of Chemical Reactions

In chemical solutions, the products of catalytic reactions can occupy different volumes compared to the reactants and thus give rise to local density variations in the fluid. These density variations generate solutal buoyancy forces, which are exerted on the fluid and thus "pump" the fluid...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 38(2022), 4 vom: 01. Feb., Seite 1432-1439
1. Verfasser: Manna, Raj Kumar (VerfasserIn)
Weitere Verfasser: Gentile, Kayla, Shklyaev, Oleg E, Sen, Ayusman, Balazs, Anna C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In chemical solutions, the products of catalytic reactions can occupy different volumes compared to the reactants and thus give rise to local density variations in the fluid. These density variations generate solutal buoyancy forces, which are exerted on the fluid and thus "pump" the fluid to flow. Herein, we examine if the reaction-induced pumping accelerates the chemical reaction by transporting the reactants to the catalyst at a rate faster than passive diffusion. Using both simulations and experiments, we show a significant increase in reaction rate when reaction-generated convective flow is present. In effect, through a feedback loop, catalysts speed up reactions not only by lowering the energy barrier but also by increasing the collision frequency between the reactants and the catalyst
Beschreibung:Date Revised 01.02.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c02593