Feature Map Distillation of Thin Nets for Low-Resolution Object Recognition

Intelligent video surveillance is an important computer vision application in natural environments. Since detected objects under surveillance are usually low-resolution and noisy, their accurate recognition represents a huge challenge. Knowledge distillation is an effective method to deal with it, b...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 13., Seite 1364-1379
1. Verfasser: Huang, Zhenhua (VerfasserIn)
Weitere Verfasser: Yang, Shunzhi, Zhou, MengChu, Li, Zhetao, Gong, Zheng, Chen, Yunwen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM335606083
003 DE-627
005 20231225230231.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3141255  |2 doi 
028 5 2 |a pubmed24n1118.xml 
035 |a (DE-627)NLM335606083 
035 |a (NLM)35025743 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Zhenhua  |e verfasserin  |4 aut 
245 1 0 |a Feature Map Distillation of Thin Nets for Low-Resolution Object Recognition 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Intelligent video surveillance is an important computer vision application in natural environments. Since detected objects under surveillance are usually low-resolution and noisy, their accurate recognition represents a huge challenge. Knowledge distillation is an effective method to deal with it, but existing related work usually focuses on reducing the channel count of a student network, not feature map size. As a result, they cannot transfer "privilege information" hidden in feature maps of a wide and deep teacher network into a thin and shallow student one, leading to the latter's poor performance. To address this issue, we propose a Feature Map Distillation (FMD) framework under which the feature map size of teacher and student networks is different. FMD consists of two main components: Feature Decoder Distillation (FDD) and Feature Map Consistency-enforcement (FMC). FDD reconstructs the shallow texture features of a thin student network to approximate the corresponding samples in a teacher network, which allows the high-resolution ones to directly guide the learning of the shallow features of the student network. FMC makes the size and direction of each deep feature map consistent between student and teacher networks, which constrains each pair of feature maps to produce the same feature distribution. FDD and FMC allow a thin student network to learn rich "privilege information" in feature maps of a wide teacher network. The overall performance of FMD is verified in multiple recognition tasks by comparing it with state-of-the-art knowledge distillation methods on low-resolution and noisy objects 
650 4 |a Journal Article 
700 1 |a Yang, Shunzhi  |e verfasserin  |4 aut 
700 1 |a Zhou, MengChu  |e verfasserin  |4 aut 
700 1 |a Li, Zhetao  |e verfasserin  |4 aut 
700 1 |a Gong, Zheng  |e verfasserin  |4 aut 
700 1 |a Chen, Yunwen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 13., Seite 1364-1379  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:13  |g pages:1364-1379 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3141255  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 13  |h 1364-1379