Correlation between Electrostatic and Hydration Forces on Silica and Gibbsite Surfaces : An Atomic Force Microscopy Study

The balance between hydration and Derjaguin-Landau-Verwey-Overbeek (DLVO) forces at solid-liquid interfaces controls many processes, such as colloidal stability, wetting, electrochemistry, biomolecular self-assembly, and ion adsorption. Yet, the origin of molecular scale hydration forces and their r...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 38(2022), 3 vom: 25. Jan., Seite 914-926
1. Verfasser: Klaassen, Aram (VerfasserIn)
Weitere Verfasser: Liu, Fei, Mugele, Frieder, Siretanu, Igor
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Silicon Dioxide 7631-86-9
LEADER 01000caa a22002652 4500
001 NLM335603823
003 DE-627
005 20240405232535.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.1c02077  |2 doi 
028 5 2 |a pubmed24n1366.xml 
035 |a (DE-627)NLM335603823 
035 |a (NLM)35025512 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Klaassen, Aram  |e verfasserin  |4 aut 
245 1 0 |a Correlation between Electrostatic and Hydration Forces on Silica and Gibbsite Surfaces  |b An Atomic Force Microscopy Study 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.02.2022 
500 |a Date Revised 05.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The balance between hydration and Derjaguin-Landau-Verwey-Overbeek (DLVO) forces at solid-liquid interfaces controls many processes, such as colloidal stability, wetting, electrochemistry, biomolecular self-assembly, and ion adsorption. Yet, the origin of molecular scale hydration forces and their relation to the surface charge density that controls the continuum scale electrostatic forces is poorly understood. We argue that these two types of forces are largely independent of each other. To support this hypothesis, we performed atomic force microscopy experiments using intermediate-sized tips that enable the simultaneous detection of DLVO and molecular scale oscillatory hydration forces at the interface between composite gibbsite:silica-aqueous electrolyte interfaces. We extract surface charge densities from forces measured at tip-sample separations of 1.5 nm and beyond using DLVO theory in combination with charge regulation boundary conditions for various pH values and salt concentrations. We simultaneously observe both colloidal scale DLVO forces and oscillatory hydration forces for an individual crystalline gibbsite particle and the underlying amorphous silica substrate for all fluid compositions investigated. While the diffuse layer charge varies with pH as expected, the oscillatory hydration forces are found to be largely independent of pH and salt concentration, supporting our hypothesis that both forces indeed have a very different origin. Oscillatory hydration forces are found to be distinctly more pronounced on gibbsite than on silica. We rationalize this observation based on the distribution of hydroxyl groups available for H bonding on the two distinct surfaces 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Silicon Dioxide  |2 NLM 
650 7 |a 7631-86-9  |2 NLM 
700 1 |a Liu, Fei  |e verfasserin  |4 aut 
700 1 |a Mugele, Frieder  |e verfasserin  |4 aut 
700 1 |a Siretanu, Igor  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 38(2022), 3 vom: 25. Jan., Seite 914-926  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:38  |g year:2022  |g number:3  |g day:25  |g month:01  |g pages:914-926 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.1c02077  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 38  |j 2022  |e 3  |b 25  |c 01  |h 914-926