Circular Polarized Light Emission in Chiral Inorganic Nanomaterials

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 34 vom: 08. Aug., Seite e2108431
1. Verfasser: Jiang, Shuang (VerfasserIn)
Weitere Verfasser: Kotov, Nicholas A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review chiral nanostructures mirror asymmetry nanocomposites nanoparticles photonics scattering
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
Chiral inorganic nanostructures strongly interact with photons changing their polarization state. The resulting circularly polarized light emission (CPLE) has cross-disciplinary importance for a variety of chemical/biological processes and is essential for development of chiral photonics. However, the polarization effects are often complex and their interpretation is dependent on the several structural parameters of the chiral nanostructure. CPLE in nanostructured media has multiple origins and several optical effects are typically convoluted into a single output. Analyzing CPLE data obtained for nanoclusters, nanoparticles, nanoassemblies, and nanocomposites from metals, chalcogenides, perovskite, and other nanostructures, it is shown here that there are several distinct groups of nanomaterials for which CPLE is dominated either by circularly polarized luminescence (CPL) or circularly polarized scattering (CPS); there are also many nanomaterials for which they are comparable. The following points are also demonstrated: 1) CPL and CPS contributions involve light-matter interactions at different structural levels; 2) contribution from CPS is especially strong for nanostructured microparticles, nanoassemblies, and composites; and 3) engineering of materials with strongly polarized light emission requires synergistic implementation of CPL and CPS effects. These findings are expected to guide development of CPLE materials in a variety of technological fields, including 3D displays, information storage, biosensors, optical spintronics, and biological probes
Beschreibung:Date Revised 24.08.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202108431