Exploiting Non-Local Priors via Self-Convolution for Highly-Efficient Image Restoration

Constructing effective priors is critical to solving ill-posed inverse problems in image processing and computational imaging. Recent works focused on exploiting non-local similarity by grouping similar patches for image modeling, and demonstrated state-of-the-art results in many image restoration a...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 22., Seite 1311-1324
Auteur principal: Guo, Lanqing (Auteur)
Autres auteurs: Zha, Zhiyuan, Ravishankar, Saiprasad, Wen, Bihan
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM335555101
003 DE-627
005 20250302214231.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3140918  |2 doi 
028 5 2 |a pubmed25n1118.xml 
035 |a (DE-627)NLM335555101 
035 |a (NLM)35020596 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Guo, Lanqing  |e verfasserin  |4 aut 
245 1 0 |a Exploiting Non-Local Priors via Self-Convolution for Highly-Efficient Image Restoration 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Constructing effective priors is critical to solving ill-posed inverse problems in image processing and computational imaging. Recent works focused on exploiting non-local similarity by grouping similar patches for image modeling, and demonstrated state-of-the-art results in many image restoration applications. However, compared to classic methods based on filtering or sparsity, non-local algorithms are more time-consuming, mainly due to the highly inefficient block matching step, i.e., distance between every pair of overlapping patches needs to be computed. In this work, we propose a novel Self-Convolution operator to exploit image non-local properties in a unified framework. We prove that the proposed Self-Convolution based formulation can generalize the commonly-used non-local modeling methods, as well as produce results equivalent to standard methods, but with much cheaper computation. Furthermore, by applying Self-Convolution, we propose an effective multi-modality image restoration scheme, which is much more efficient than conventional block matching for non-local modeling. Experimental results demonstrate that (1) Self-Convolution with fast Fourier transform implementation can significantly speed up most of the popular non-local image restoration algorithms, with two-fold to nine-fold faster block matching, and (2) the proposed online multi-modality image restoration scheme achieves superior denoising results than competing methods in both efficiency and effectiveness on RGB-NIR images. The code for this work is publicly available at https://github.com/GuoLanqing/Self-Convolution 
650 4 |a Journal Article 
700 1 |a Zha, Zhiyuan  |e verfasserin  |4 aut 
700 1 |a Ravishankar, Saiprasad  |e verfasserin  |4 aut 
700 1 |a Wen, Bihan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 22., Seite 1311-1324  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:31  |g year:2022  |g day:22  |g pages:1311-1324 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3140918  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 22  |h 1311-1324