Video Moment Retrieval With Cross-Modal Neural Architecture Search

The task of video moment retrieval (VMR) is to retrieve the specific video moment from an untrimmed video, according to a textual query. It is a challenging task that requires effective modeling of complex cross-modal matching relationship. Recent efforts primarily model the cross-modal interactions...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 11., Seite 1204-1216
1. Verfasser: Yang, Xun (VerfasserIn)
Weitere Verfasser: Wang, Shanshan, Dong, Jian, Dong, Jianfeng, Wang, Meng, Chua, Tat-Seng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM335506674
003 DE-627
005 20231225230014.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3140611  |2 doi 
028 5 2 |a pubmed24n1118.xml 
035 |a (DE-627)NLM335506674 
035 |a (NLM)35015640 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Xun  |e verfasserin  |4 aut 
245 1 0 |a Video Moment Retrieval With Cross-Modal Neural Architecture Search 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.01.2022 
500 |a Date Revised 21.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The task of video moment retrieval (VMR) is to retrieve the specific video moment from an untrimmed video, according to a textual query. It is a challenging task that requires effective modeling of complex cross-modal matching relationship. Recent efforts primarily model the cross-modal interactions by hand-crafted network architectures. Despite their effectiveness, they rely heavily on expert experience to select architectures and have numerous hyperparameters that need to be carefully tuned, which significantly limit their applications in real-world scenarios. How to design flexible architectures for modeling cross-modal interactions with less manual effort is crucial for the task of VMR but has received limited attention so far. To address this issue, we present a novel VMR approach that automatically searches for an optimal architecture to learn cross-modal matching relationship. Specifically, we develop a cross-modal architecture searching method. It first searches for repeatable cell network architectures based on a directed acyclic graph, which performs operation sampling over a customized task-specific operation set. Then, we adaptively modulate the edge importance in the graph by a query-aware attention network, which performs edge sampling softly in the searched cell. Different from existing neural architecture search methods, our approach can effectively exploit the query information to reach query-conditioned architectures for modeling cross modal matching. Extensive experiments on three benchmark datasets show that our approach can not only significantly outperform the state-of-the-art methods but also run more efficiently and robustly than manually crafted network architectures 
650 4 |a Journal Article 
700 1 |a Wang, Shanshan  |e verfasserin  |4 aut 
700 1 |a Dong, Jian  |e verfasserin  |4 aut 
700 1 |a Dong, Jianfeng  |e verfasserin  |4 aut 
700 1 |a Wang, Meng  |e verfasserin  |4 aut 
700 1 |a Chua, Tat-Seng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 11., Seite 1204-1216  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:11  |g pages:1204-1216 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3140611  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 11  |h 1204-1216