|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM335506666 |
003 |
DE-627 |
005 |
20231225230014.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2022.3140609
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1118.xml
|
035 |
|
|
|a (DE-627)NLM335506666
|
035 |
|
|
|a (NLM)35015639
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Bai, Haoran
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Self-Guided Image Dehazing Using Progressive Feature Fusion
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 20.01.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a We propose an effective image dehazing algorithm which explores useful information from the input hazy image itself as the guidance for the haze removal. The proposed algorithm first uses a deep pre-dehazer to generate an intermediate result, and takes it as the reference image due to the clear structures it contains. To better explore the guidance information in the generated reference image, it then develops a progressive feature fusion module to fuse the features of the hazy image and the reference image. Finally, the image restoration module takes the fused features as input to use the guidance information for better clear image restoration. All the proposed modules are trained in an end-to-end fashion, and we show that the proposed deep pre-dehazer with progressive feature fusion module is able to help haze removal. Extensive experimental results show that the proposed algorithm performs favorably against state-of-the-art methods on the widely-used dehazing benchmark datasets as well as real-world hazy images
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Pan, Jinshan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiang, Xinguang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tang, Jinhui
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 31(2022) vom: 11., Seite 1217-1229
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:31
|g year:2022
|g day:11
|g pages:1217-1229
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2022.3140609
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2022
|b 11
|h 1217-1229
|