Self-Guided Image Dehazing Using Progressive Feature Fusion

We propose an effective image dehazing algorithm which explores useful information from the input hazy image itself as the guidance for the haze removal. The proposed algorithm first uses a deep pre-dehazer to generate an intermediate result, and takes it as the reference image due to the clear stru...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 11., Seite 1217-1229
1. Verfasser: Bai, Haoran (VerfasserIn)
Weitere Verfasser: Pan, Jinshan, Xiang, Xinguang, Tang, Jinhui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM335506666
003 DE-627
005 20231225230014.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3140609  |2 doi 
028 5 2 |a pubmed24n1118.xml 
035 |a (DE-627)NLM335506666 
035 |a (NLM)35015639 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bai, Haoran  |e verfasserin  |4 aut 
245 1 0 |a Self-Guided Image Dehazing Using Progressive Feature Fusion 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose an effective image dehazing algorithm which explores useful information from the input hazy image itself as the guidance for the haze removal. The proposed algorithm first uses a deep pre-dehazer to generate an intermediate result, and takes it as the reference image due to the clear structures it contains. To better explore the guidance information in the generated reference image, it then develops a progressive feature fusion module to fuse the features of the hazy image and the reference image. Finally, the image restoration module takes the fused features as input to use the guidance information for better clear image restoration. All the proposed modules are trained in an end-to-end fashion, and we show that the proposed deep pre-dehazer with progressive feature fusion module is able to help haze removal. Extensive experimental results show that the proposed algorithm performs favorably against state-of-the-art methods on the widely-used dehazing benchmark datasets as well as real-world hazy images 
650 4 |a Journal Article 
700 1 |a Pan, Jinshan  |e verfasserin  |4 aut 
700 1 |a Xiang, Xinguang  |e verfasserin  |4 aut 
700 1 |a Tang, Jinhui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 11., Seite 1217-1229  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:11  |g pages:1217-1229 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3140609  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 11  |h 1217-1229