Task-Oriented Convex Bilevel Optimization With Latent Feasibility

This paper firstly proposes a convex bilevel optimization paradigm to formulate and optimize popular learning and vision problems in real-world scenarios. Different from conventional approaches, which directly design their iteration schemes based on given problem formulation, we introduce a task-ori...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 11., Seite 1190-1203
1. Verfasser: Liu, Risheng (VerfasserIn)
Weitere Verfasser: Ma, Long, Yuan, Xiaoming, Zeng, Shangzhi, Zhang, Jin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM335506658
003 DE-627
005 20250302213553.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3140607  |2 doi 
028 5 2 |a pubmed25n1118.xml 
035 |a (DE-627)NLM335506658 
035 |a (NLM)35015638 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Risheng  |e verfasserin  |4 aut 
245 1 0 |a Task-Oriented Convex Bilevel Optimization With Latent Feasibility 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper firstly proposes a convex bilevel optimization paradigm to formulate and optimize popular learning and vision problems in real-world scenarios. Different from conventional approaches, which directly design their iteration schemes based on given problem formulation, we introduce a task-oriented energy as our latent constraint which integrates richer task information. By explicitly re- characterizing the feasibility, we establish an efficient and flexible algorithmic framework to tackle convex models with both shrunken solution space and powerful auxiliary (based on domain knowledge and data distribution of the task). In theory, we present the convergence analysis of our latent feasibility re- characterization based numerical strategy. We also analyze the stability of the theoretical convergence under computational error perturbation. Extensive numerical experiments are conducted to verify our theoretical findings and evaluate the practical performance of our method on different applications 
650 4 |a Journal Article 
700 1 |a Ma, Long  |e verfasserin  |4 aut 
700 1 |a Yuan, Xiaoming  |e verfasserin  |4 aut 
700 1 |a Zeng, Shangzhi  |e verfasserin  |4 aut 
700 1 |a Zhang, Jin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 11., Seite 1190-1203  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:31  |g year:2022  |g day:11  |g pages:1190-1203 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3140607  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 11  |h 1190-1203