Revisiting the Theory of Coagulation of Colloidal Dispersions : An Improved Expression for the Stability Ratio

The stability of a colloidal dispersion has long been expressed in terms of the stability ratio. Based on the available theories of coagulation of colloidal dispersions, a novel expression, complying with the classical definition, is developed for the stability ratio. It accounts for the contributio...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 38(2022), 3 vom: 25. Jan., Seite 1131-1140
1. Verfasser: Liu, Longcheng (VerfasserIn)
Weitere Verfasser: Meng, Shuo, Li, Chunguang, Li, Yongmei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The stability of a colloidal dispersion has long been expressed in terms of the stability ratio. Based on the available theories of coagulation of colloidal dispersions, a novel expression, complying with the classical definition, is developed for the stability ratio. It accounts for the contributions of both primary and secondary minimum coagulations to the overall rate of coagulations. In addition, it can also be regarded as the result of a combination of the kinetic theory of an ideal gas and the Smoluchowski theory with Fuchs' correction, considering the interaction between identical spherical particles and their surfaces immersed in a symmetrical electrolyte solution. The agreement with experimental data suggested that it is superior to the classical ones in describing the weak dependence of the stability ratio on the particle size and the valence of the counterion, by emphasizing the importance of the secondary minimum coagulation in dispersion stability and the complementation between the two modes of coagulation
Beschreibung:Date Revised 25.01.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c02790