|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM335356621 |
003 |
DE-627 |
005 |
20231225225640.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.1c03062
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1117.xml
|
035 |
|
|
|a (DE-627)NLM335356621
|
035 |
|
|
|a (NLM)35000388
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liu, Zhen
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Temporal Evolution of Surface Contamination under Ultra-high Vacuum
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 25.01.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Ultra-high vacuum (UHV) is essential to many surface characterization techniques and is often applied with the intention of reducing exposure to airborne contaminants. Surface contamination under UHV is not well-understood, however, and introduces uncertainty in surface elemental characterization or hinders surface-sensitive manufacturing approaches. In this work, we investigated the time-dependent surface composition of gold samples with different initial levels of contamination under UHV over a period of 24 h with both experiments and physical modeling. Our results show that surface hydrocarbon concentration under UHV can be explained by molecular adsorption-desorption competition theory. Gold surfaces that were initially pristine adsorbed hydrocarbons over time under UHV; conversely, surfaces that were initially heavily contaminated desorbed hydrocarbons over time. During both adsorption and desorption, the concentration of contaminants tended toward the same equilibrium value. This study provides a comprehensive evaluation of the temporal evolution of surface contamination under UHV and highlights routes to mitigate surface contamination effects
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Song, Youngsup
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rajappan, Anoop
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Evelyn N
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Preston, Daniel J
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 38(2022), 3 vom: 25. Jan., Seite 1252-1258
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:38
|g year:2022
|g number:3
|g day:25
|g month:01
|g pages:1252-1258
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.1c03062
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 38
|j 2022
|e 3
|b 25
|c 01
|h 1252-1258
|