|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM33532939X |
003 |
DE-627 |
005 |
20250302211125.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202108120
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1117.xml
|
035 |
|
|
|a (DE-627)NLM33532939X
|
035 |
|
|
|a (NLM)34997657
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Dhawan, Amit R
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Fabrication of Efficient Single-Emitter Plasmonic Patch Antennas by Deterministic In Situ Optical Lithography using Spatially Modulated Light
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 17.03.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a Single-emitter plasmonic patch antennas are room-temperature deterministic single-photon sources, which exhibit highly accelerated and directed single-photon emission. However, for efficient operation these structures require 3D nanoscale deterministic control of emitter positioning within the device, which is a demanding task, especially when emitter damage during fabrication is a major concern. To overcome this limitation, the deterministic room-temperature in situ optical lithography protocol uses spatially modulated light to position a plasmonic structure nondestructively on any selected single-emitter with 3D nanoscale control. Herein, the emission statistics of such plasmonic antennas that embed a deterministically positioned single colloidal CdSe/CdS quantum dot, which highlight acceleration and brightness of emission, are analyzed. It is demonstrated that the presented antenna induces a 1000-fold effective increase in the absorption cross-section, and, under high pumping, these antennas show nonlinearly enhanced emission
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a absorption cross-section
|
650 |
|
4 |
|a lithography
|
650 |
|
4 |
|a nanofabrication
|
650 |
|
4 |
|a photonics
|
650 |
|
4 |
|a plasmonics
|
650 |
|
4 |
|a quantum optics
|
650 |
|
4 |
|a single photons
|
700 |
1 |
|
|a Nasilowski, Michel
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Zhiming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dubertret, Benoît
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Maître, Agnès
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 11 vom: 30. März, Seite e2108120
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:11
|g day:30
|g month:03
|g pages:e2108120
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202108120
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 11
|b 30
|c 03
|h e2108120
|