Rethinking Collaborative Metric Learning : Toward an Efficient Alternative Without Negative Sampling

The recently proposed Collaborative Metric Learning (CML) paradigm has aroused wide interest in the area of recommendation systems (RS) owing to its simplicity and effectiveness. Typically, the existing literature of CML depends largely on the negative sampling strategy to alleviate the time-consumi...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 1 vom: 01. Jan., Seite 1017-1035
Auteur principal: Bao, Shilong (Auteur)
Autres auteurs: Xu, Qianqian, Yang, Zhiyong, Cao, Xiaochun, Huang, Qingming
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM335304796
003 DE-627
005 20250302210756.0
007 cr uuu---uuuuu
008 231225s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3141095  |2 doi 
028 5 2 |a pubmed25n1117.xml 
035 |a (DE-627)NLM335304796 
035 |a (NLM)34995181 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bao, Shilong  |e verfasserin  |4 aut 
245 1 0 |a Rethinking Collaborative Metric Learning  |b Toward an Efficient Alternative Without Negative Sampling 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.04.2023 
500 |a Date Revised 05.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The recently proposed Collaborative Metric Learning (CML) paradigm has aroused wide interest in the area of recommendation systems (RS) owing to its simplicity and effectiveness. Typically, the existing literature of CML depends largely on the negative sampling strategy to alleviate the time-consuming burden of pairwise computation. However, in this work, by taking a theoretical analysis, we find that negative sampling would lead to a biased estimation of the generalization error. Specifically, we show that the sampling-based CML would introduce a bias term in the generalization bound, which is quantified by the per-user Total Variance (TV) between the distribution induced by negative sampling and the ground truth distribution. This suggests that optimizing the sampling-based CML loss function does not ensure a small generalization error even with sufficiently large training data. Moreover, we show that the bias term will vanish without the negative sampling strategy. Motivated by this, we propose an efficient alternative without negative sampling for CML named Sampling-Free Collaborative Metric Learning (SFCML), to get rid of the sampling bias in a practical sense. Finally, comprehensive experiments over seven benchmark datasets speak to the supriority of the proposed algorithm 
650 4 |a Journal Article 
700 1 |a Xu, Qianqian  |e verfasserin  |4 aut 
700 1 |a Yang, Zhiyong  |e verfasserin  |4 aut 
700 1 |a Cao, Xiaochun  |e verfasserin  |4 aut 
700 1 |a Huang, Qingming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 1 vom: 01. Jan., Seite 1017-1035  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:45  |g year:2023  |g number:1  |g day:01  |g month:01  |g pages:1017-1035 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3141095  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 1  |b 01  |c 01  |h 1017-1035