Unraveling Crystallization Mechanisms and Electronic Structure of Phase-Change Materials by Large-Scale Ab Initio Simulations

© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 11 vom: 28. März, Seite e2109139
1. Verfasser: Xu, Yazhi (VerfasserIn)
Weitere Verfasser: Zhou, Yuxing, Wang, Xu-Dong, Zhang, Wei, Ma, En, Deringer, Volker L, Mazzarello, Riccardo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Anderson insulators metal-insulator transitions neuromorphic applications phase-change materials
LEADER 01000naa a22002652 4500
001 NLM335293549
003 DE-627
005 20231225225511.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202109139  |2 doi 
028 5 2 |a pubmed24n1117.xml 
035 |a (DE-627)NLM335293549 
035 |a (NLM)34994023 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Yazhi  |e verfasserin  |4 aut 
245 1 0 |a Unraveling Crystallization Mechanisms and Electronic Structure of Phase-Change Materials by Large-Scale Ab Initio Simulations 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 17.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a Ge-Sb-Te ("GST") alloys are leading phase-change materials for digital memories and neuro-inspired computing. Upon fast crystallization, these materials form rocksalt-like phases with large structural and vacancy disorder, leading to an insulating phase at low temperature. Here, a comprehensive description of crystallization, structural disorder, and electronic properties of GeSb2 Te4 based on realistic, quantum-mechanically based ("ab initio") computer simulations with system sizes of more than 1000 atoms is provided. It is shown how an analysis of the crystallization mechanism based on the smooth overlap of atomic positions kernel reveals the evolution of both geometrical and chemical order. The connection between structural and electronic properties of the disordered, as-crystallized models, which are relevant to the transport properties of GST, is then studied. Furthermore, it is shown how antisite defects and extended Sb-rich motifs can lead to Anderson localization in the conduction band. Beyond memory applications, these findings are therefore more generally relevant to disordered rocksalt-like chalcogenides that exhibit self-doping, since they can explain the origin of Anderson insulating behavior in both p- and n-doped chalcogenide materials 
650 4 |a Journal Article 
650 4 |a Anderson insulators 
650 4 |a metal-insulator transitions 
650 4 |a neuromorphic applications 
650 4 |a phase-change materials 
700 1 |a Zhou, Yuxing  |e verfasserin  |4 aut 
700 1 |a Wang, Xu-Dong  |e verfasserin  |4 aut 
700 1 |a Zhang, Wei  |e verfasserin  |4 aut 
700 1 |a Ma, En  |e verfasserin  |4 aut 
700 1 |a Deringer, Volker L  |e verfasserin  |4 aut 
700 1 |a Mazzarello, Riccardo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 11 vom: 28. März, Seite e2109139  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:11  |g day:28  |g month:03  |g pages:e2109139 
856 4 0 |u http://dx.doi.org/10.1002/adma.202109139  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 11  |b 28  |c 03  |h e2109139