Machine learning denoising of high-resolution X-ray nanotomography data

open access.

Bibliographische Detailangaben
Veröffentlicht in:Journal of synchrotron radiation. - 1994. - 29(2022), Pt 1 vom: 01. Jan., Seite 230-238
1. Verfasser: Flenner, Silja (VerfasserIn)
Weitere Verfasser: Bruns, Stefan, Longo, Elena, Parnell, Andrew J, Stockhausen, Kilian E, Müller, Martin, Greving, Imke
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of synchrotron radiation
Schlagworte:Journal Article Zernike phase contrast denoising full-field X-ray microscopy machine learning nanotomography
LEADER 01000naa a22002652 4500
001 NLM335208371
003 DE-627
005 20231225225329.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600577521011139  |2 doi 
028 5 2 |a pubmed24n1117.xml 
035 |a (DE-627)NLM335208371 
035 |a (NLM)34985440 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Flenner, Silja  |e verfasserin  |4 aut 
245 1 0 |a Machine learning denoising of high-resolution X-ray nanotomography data 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a open access. 
520 |a High-resolution X-ray nanotomography is a quantitative tool for investigating specimens from a wide range of research areas. However, the quality of the reconstructed tomogram is often obscured by noise and therefore not suitable for automatic segmentation. Filtering methods are often required for a detailed quantitative analysis. However, most filters induce blurring in the reconstructed tomograms. Here, machine learning (ML) techniques offer a powerful alternative to conventional filtering methods. In this article, we verify that a self-supervised denoising ML technique can be used in a very efficient way for eliminating noise from nanotomography data. The technique presented is applied to high-resolution nanotomography data and compared to conventional filters, such as a median filter and a nonlocal means filter, optimized for tomographic data sets. The ML approach proves to be a very powerful tool that outperforms conventional filters by eliminating noise without blurring relevant structural features, thus enabling efficient quantitative analysis in different scientific fields 
650 4 |a Journal Article 
650 4 |a Zernike phase contrast 
650 4 |a denoising 
650 4 |a full-field X-ray microscopy 
650 4 |a machine learning 
650 4 |a nanotomography 
700 1 |a Bruns, Stefan  |e verfasserin  |4 aut 
700 1 |a Longo, Elena  |e verfasserin  |4 aut 
700 1 |a Parnell, Andrew J  |e verfasserin  |4 aut 
700 1 |a Stockhausen, Kilian E  |e verfasserin  |4 aut 
700 1 |a Müller, Martin  |e verfasserin  |4 aut 
700 1 |a Greving, Imke  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of synchrotron radiation  |d 1994  |g 29(2022), Pt 1 vom: 01. Jan., Seite 230-238  |w (DE-627)NLM09824129X  |x 1600-5775  |7 nnns 
773 1 8 |g volume:29  |g year:2022  |g number:Pt 1  |g day:01  |g month:01  |g pages:230-238 
856 4 0 |u http://dx.doi.org/10.1107/S1600577521011139  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_40 
912 |a GBV_ILN_350 
912 |a GBV_ILN_2005 
951 |a AR 
952 |d 29  |j 2022  |e Pt 1  |b 01  |c 01  |h 230-238