|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM335208371 |
003 |
DE-627 |
005 |
20231225225329.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1107/S1600577521011139
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1117.xml
|
035 |
|
|
|a (DE-627)NLM335208371
|
035 |
|
|
|a (NLM)34985440
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Flenner, Silja
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Machine learning denoising of high-resolution X-ray nanotomography data
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 05.11.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a open access.
|
520 |
|
|
|a High-resolution X-ray nanotomography is a quantitative tool for investigating specimens from a wide range of research areas. However, the quality of the reconstructed tomogram is often obscured by noise and therefore not suitable for automatic segmentation. Filtering methods are often required for a detailed quantitative analysis. However, most filters induce blurring in the reconstructed tomograms. Here, machine learning (ML) techniques offer a powerful alternative to conventional filtering methods. In this article, we verify that a self-supervised denoising ML technique can be used in a very efficient way for eliminating noise from nanotomography data. The technique presented is applied to high-resolution nanotomography data and compared to conventional filters, such as a median filter and a nonlocal means filter, optimized for tomographic data sets. The ML approach proves to be a very powerful tool that outperforms conventional filters by eliminating noise without blurring relevant structural features, thus enabling efficient quantitative analysis in different scientific fields
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Zernike phase contrast
|
650 |
|
4 |
|a denoising
|
650 |
|
4 |
|a full-field X-ray microscopy
|
650 |
|
4 |
|a machine learning
|
650 |
|
4 |
|a nanotomography
|
700 |
1 |
|
|a Bruns, Stefan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Longo, Elena
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Parnell, Andrew J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Stockhausen, Kilian E
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Müller, Martin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Greving, Imke
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of synchrotron radiation
|d 1994
|g 29(2022), Pt 1 vom: 01. Jan., Seite 230-238
|w (DE-627)NLM09824129X
|x 1600-5775
|7 nnns
|
773 |
1 |
8 |
|g volume:29
|g year:2022
|g number:Pt 1
|g day:01
|g month:01
|g pages:230-238
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1107/S1600577521011139
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_40
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_2005
|
951 |
|
|
|a AR
|
952 |
|
|
|d 29
|j 2022
|e Pt 1
|b 01
|c 01
|h 230-238
|