Semantics-Guided Contrastive Network for Zero-Shot Object Detection

Zero-shot object detection (ZSD), the task that extends conventional detection models to detecting objects from unseen categories, has emerged as a new challenge in computer vision. Most existing approaches tackle the ZSD task with a strict mapping-transfer strategy that may lead to suboptimal ZSD r...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 3 vom: 31. Feb., Seite 1530-1544
1. Verfasser: Yan, Caixia (VerfasserIn)
Weitere Verfasser: Chang, Xiaojun, Luo, Minnan, Liu, Huan, Zhang, Xiaoqin, Zheng, Qinghua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM335181058
003 DE-627
005 20240207231941.0
007 cr uuu---uuuuu
008 231225s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3140070  |2 doi 
028 5 2 |a pubmed24n1283.xml 
035 |a (DE-627)NLM335181058 
035 |a (NLM)34982675 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yan, Caixia  |e verfasserin  |4 aut 
245 1 0 |a Semantics-Guided Contrastive Network for Zero-Shot Object Detection 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Zero-shot object detection (ZSD), the task that extends conventional detection models to detecting objects from unseen categories, has emerged as a new challenge in computer vision. Most existing approaches tackle the ZSD task with a strict mapping-transfer strategy that may lead to suboptimal ZSD results: 1) the learning process of these models neglects the available semantic information on unseen classes, which can easily bias towards the seen categories; 2) the original visual feature space is not well-structured for the ZSD task due to the lack of discriminative information. To address these issues, we develop a novel Semantics-Guided Contrastive Network for ZSD, named ContrastZSD, a detection framework that first brings contrastive learning mechanism into the realm of zero-shot detection. Particularly, ContrastZSD incorporates two semantics-guided contrastive learning subnets that contrast between region-category and region-region pairs respectively. The pairwise contrastive tasks take advantage of supervision signals derived from both the ground truth label and class similarity information. By performing supervised contrastive learning over those explicit semantic supervision, the model can learn more knowledge about unseen categories to avoid the bias problem to seen concepts, while optimizing the visual data structure to be more discriminative for better visual-semantic alignment. Extensive experiments are conducted on two popular benchmarks for ZSD, i.e., PASCAL VOC and MS COCO. Results show that our method outperforms the previous state-of-the-art on both ZSD and generalized ZSD tasks 
650 4 |a Journal Article 
700 1 |a Chang, Xiaojun  |e verfasserin  |4 aut 
700 1 |a Luo, Minnan  |e verfasserin  |4 aut 
700 1 |a Liu, Huan  |e verfasserin  |4 aut 
700 1 |a Zhang, Xiaoqin  |e verfasserin  |4 aut 
700 1 |a Zheng, Qinghua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 3 vom: 31. Feb., Seite 1530-1544  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:3  |g day:31  |g month:02  |g pages:1530-1544 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3140070  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 3  |b 31  |c 02  |h 1530-1544