Tensor Completion via Complementary Global, Local, and Nonlocal Priors

Completing missing entries in multidimensional visual data is a typical ill-posed problem that requires appropriate exploitation of prior information of the underlying data. Commonly used priors can be roughly categorized into three classes: global tensor low-rankness, local properties, and nonlocal...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 18., Seite 984-999
Auteur principal: Zhao, Xi-Le (Auteur)
Autres auteurs: Yang, Jing-Hua, Ma, Tian-Hui, Jiang, Tai-Xiang, Ng, Michael K, Huang, Ting-Zhu
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article