Tensor Completion via Complementary Global, Local, and Nonlocal Priors
Completing missing entries in multidimensional visual data is a typical ill-posed problem that requires appropriate exploitation of prior information of the underlying data. Commonly used priors can be roughly categorized into three classes: global tensor low-rankness, local properties, and nonlocal...
Description complète
Détails bibliographiques
Publié dans: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 18., Seite 984-999
|
Auteur principal: |
Zhao, Xi-Le
(Auteur) |
Autres auteurs: |
Yang, Jing-Hua,
Ma, Tian-Hui,
Jiang, Tai-Xiang,
Ng, Michael K,
Huang, Ting-Zhu |
Format: | Article en ligne
|
Langue: | English |
Publié: |
2022
|
Accès à la collection: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|
Sujets: | Journal Article |